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PREFACE

Progress in software engineering over the last 50 years has been astonishing. Our
societies could not function without large professional software systems. National
utilities and infrastructure—energy, communications and transport—all rely on
complex and mostly reliable computer systems. Software has allowed us to explore
space and to create the World Wide Web—the most significant information system
in the history of mankind. Smartphones and tablets are ubiquitous and an entire ‘apps
industry’ developing software for these devices has emerged in the past few years.

Humanity is now facing a demanding set of challenges—climate change and
extreme weather, declining natural resources, an increasing world population to be fed
and housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these challenges and,
for sure, software will have a central role in these technologies. Software engineering
is, therefore, critically important for our future on this planet. We have to continue to
educate software engineers and develop the discipline so that we meet the demand for
more software and create the increasingly complex future systems that we need.

Of course, there are still problems with software projects. Systems are still some-
times delivered late and cost more than expected. We are creating increasingly com-
plex software systems of systems and we should not be surprised that we encounter
difficulties along the way. However, we should not let these problems conceal the
real successes in software engineering and the impressive software engineering
methods and technologies that have been developed.

This book, in different editions, has now been around for over 30 years and this edi-
tion is based around the essential principles that were established in the first edition:

1. I write about software engineering as it is practiced in industry, without taking
an evangelical position on particular approaches such as agile development or
formal methods. In reality, industry mixes techniques such as agile and plan-
based development and this is reflected in the book.
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2. I write about what I know and understand. I have had many suggestions for
additional topics that might be covered in more detail such as open source
development, the use of the UML and mobile software engineering. But I don’t
really know enough about these areas. My own work has been in system depend-
ability and in systems engineering and this is reflected in my selection of
advanced topics for the book.

I believe that the key issues for modern software engineering are managing com-
plexity, integrating agility with other methods and ensuring that our systems are
secure and resilient. These issues have been the driver for the changes and additions
in this new edition of my book.

Changes from the gth edition

In summary, the major updates and additions in this book from the 9th edition are:

¢ I have extensively updated the chapter on agile software engineering, with new
material on Scrum. I have updated other chapters as required to reflect the increas-
ing use of agile methods of software engineering.

e I have added new chapters on resilience engineering, systems engineering, and
systems of systems.

* Thave completely reorganized three chapters covering reliability, safety, and security.

e [ have added new material on RESTful services to the chapter covering service-
oriented software engineering.

e I have revised and updated the chapter on configuration management with new
material on distributed version control systems.

e I have moved chapters on aspect-oriented software engineering and process
improvement from the print version of the book to the web site.

¢ New supplementary material has been added to the web site, including a set of
supporting videos. I have explained key topics on video and recommended related
YouTube videos.

The 4-part structure of the book, introduced in earlier editions, has been retained
but I have made significant changes in each part of the book.

1. In Part 1, Introduction to software engineering, I have completely rewritten
Chapter 3 (agile methods) and updated this to reflect the increasing use of Scrum.
A new case study on a digital learning environment has been added to Chapter 1
and is used in a number of chapters. Legacy systems are covered in more detail
in Chapter 9. Minor changes and updates have been made to all other chapters.
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Readership

2. Part 2, which covers dependable systems, has been revised and restructured.
Rather than an activity-oriented approach where information on safety, security
and reliability is spread over several chapters, I have reorganized this so that
each topic has a chapter in its own right. This makes it easier to cover a single
topic, such as security, as part of a more general course. I have added a com-
pletely new chapter on resilience engineering which covers cybersecurity,
organizational resilience, and resilient systems design.

3. In Part 3, I have added new chapters on systems engineering and systems of
systems and have extensively revised the material on service-oriented systems
engineering to reflect the increasing use of RESTful services. The chapter on
aspect-oriented software engineering has been deleted from the print version but
remains available as a web chapter.

4. In Part 4, I have updated the material on configuration management to reflect
the increasing use of distributed version control tools such as Git. The chapter
on process improvement has been deleted from the print version but remains
available as a web chapter.

An important change in the supplementary material for the book is the addition of
video recommendations in all chapters. I have made over 40 videos on a range of topics
that are available on my YouTube channel and linked from the book’s web pages. In cases
where I have not made videos, I have recommended YouTube videos that may be useful.

I explain the rationale behind the changes that I’'ve made in this short video:

http://software-engineering-book/videos/10th-edition-changes

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. I assume that readers
understand the basics of programming and fundamental data structures.

Software engineers in industry may find the book useful as general reading and to
update their knowledge on topics such as software reuse, architectural design,
dependability and security and systems engineering.

Using the book in software engineering courses

I have designed the book so that it can be used in three different types of software
engineering course:

1. General introductory courses in software engineering. The first part of the book
has been designed to support a 1-semester course in introductory software engi-
neering. There are 9 chapters that cover fundamental topics in software engineering.
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Book website

If your course has a practical component, management chapters in Part 4 may be
substituted for some of these.

2. Introductory or intermediate courses on specific software engineering topics.

You can create a range of more advanced courses using the chapters in parts
2-4. For example, I have taught a course in critical systems using the chapters in
Part 2 plus chapters on systems engineering and quality management. In a course
covering software-intensive systems engineering, I used chapters on systems
engineering, requirements engineering, systems of systems, distributed software
engineering, embedded software, project management and project planning.

3. More advanced courses in specific software engineering topics. In this case, the

chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 15-18.

Instructors may access additional teaching support material from Pearson’s website.

Some of this is password-protected and instructors using the book for teaching can
obtain a password by registering at the Pearson website. The material available includes:

e Model answers to selected end of chapter exercises.

Quiz questions and answers for each chapter.

You can access this material at:
www.pearsonglobaleditions.com/Sommerville

This book has been designed as a hybrid print/web text in which core information in the
printed edition is linked to supplementary material on the web. Several chapters include
specially written ‘web sections’ that add to the information in that chapter. There are also
six ‘web chapters’ on topics that I have not covered in the print version of the book.

You can download a wide range of supporting material from the book’s website

(software-engineering-book.com) including:

e A set of videos where I cover a range of software engineering topics. I also rec-

ommend other YouTube videos that can support learning.

An instructor’s guide that gives advice on how to use the book in teaching differ-
ent courses.

Further information on the book’s case studies (insulin pump, mental health care
system, wilderness weather system, digital learning system), as well other case
studies, such as the failure of the Ariane 5 launcher.


http://www.pearsonglobaleditions.com/Sommerville
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e Six web chapters covering process improvement, formal methods, interaction
design, application architectures, documentation and aspect-oriented development.

*  Web sections that add to the content presented in each chapter. These web sec-
tions are linked from breakout boxes in each chapter.

* PowerPoint presentations for all of the chapters in the book and additional
PowerPoint presentations covering a range of systems engineering topics are
available at pearsonglobaleditions.com/Sommerville.

In response to requests from users of the book, I have published a complete
requirements specification for one of the system case studies on the book’s web site.
It is difficult for students to get access to such documents and so understand their
structure and complexity. To avoid confidentiality issues, I have re-engineered the
requirements document from a real system so there are no restrictions on its use.

Contact details

Website: software-engineering-book.com

Email: name: software.engineering.book; domain: gmail.com

Blog: iansommerville.com/systems-software-and-technology

YouTube: youtube.com/user/SoftwareEngBook

Facebook: facebook.com/sommerville.software.engineering

Twitter: @SoftwareEngBook or @iansommerville (for more general tweets)

Follow me on Twitter or Facebook to get updates on new material and comments on
software and systems engineering.
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PART

Introduction
Eo Software
n

My aim in this part of the book is to provide a general introduction to soft-
ware engineering. The chapters in this part have been designed to support
a one-semester first course in software engineering. | introduce impor-
tant concepts such as software processes and agile methods, and describe
essential software development activities, from requirements specification
through to system evolution.

Chapter 1 is a general introduction that introduces professional software
engineering and defines some software engineering concepts. I have also
included a brief discussion of ethical issues in software engineering. It is
important for software engineers to think about the wider implications of
their work. This chapter also introduces four case studies that I use in the
book. These are an information system for managing records of patients
undergoing treatment for mental health problems (Mentcare), a control
system for a portable insulin pump, an embedded system for a wilder-
ness weather station and a digital learning environment (iLearn).

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, I introduce software process models, such as the
waterfall model, and I discuss the basic activities that are part of these
processes. Chapter 3 supplements this with a discussion of agile devel-
opment methods for software engineering. This chapter had been



extensively changed from previous editions with a focus on agile devel-
opment using Scrum and a discussion of agile practices such as stories
for requirements definition and test-driven development.

The remaining chapters in this part are extended descriptions of the
software process activities that are introduced in Chapter 2. Chapter 4
covers the critically important topic of requirements engineering, where
the requirements for what a system should do are defined. Chapter 5
explains system modeling using the UML, where 1 focus on the use of
use case diagrams, class diagrams, sequence diagrams and state dia-
grams for modeling a software system. In Chapter 6, | discuss the impor-
tance of software architecture and the use of architectural patterns in
software design.

Chapter 7 introduces object oriented design and the use of design pat-
terns. | also introduce important implementation issues here—reuse,
configuration management and host-target development and discuss
open source development. Chapter 8 focuses on software testing from
unit testing during system development to the testing of software
releases. 1 also discuss the use of test-driven development—an
approach pioneered in agile methods but which has wide applicabil-
ity. Finally, Chapter 9 presents an overview of software evolution
issues. 1 cover evolution processes, software maintenance and legacy
system management.
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Introduction

Objectives

The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

m understand what software engineering is and why it is important;

m understand that the development of different types of software
system may require different software engineering techniques;

m understand ethical and professional issues that are important
for software engineers;

m have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents

1.1 Professional software development
1.2 Software engineering ethics
1.3 Case studies
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Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1. Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2. Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural
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@ History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today's software engineering.

http://software-engineering-book.com/web/history/

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

IEEY Professional software development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, [ have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it


http://software-engineering-book.com/web/history
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What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good Good software should deliver the required functionality and

software? performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned

with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental Software specification, software development, software validation

software engineering activities? and software evolution.

What is the difference between Computer science focuses on theory and fundamentals; software

software engineering and engineering is concerned with the practicalities of developing and

computer science? delivering useful software.

What is the difference between System engineering is concerned with all aspects of computer-

software engineering and system based systems development including hardware, software and

engineering? process engineering. Software engineering is part of this more
general process.

What are the key challenges Coping with increasing diversity, demands for reduced delivery

facing software engineering? times and developing trustworthy software.

What are the costs of software Roughly 60% of software costs are development costs, 40% are

engineering? testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software While all software projects have to be professionally managed and

engineering techniques and developed, different techniques are appropriate for different types

methods? of system. For example, games should always be developed using

a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet Not only has the Internet led to the development of massive, highly

made to software engineering? distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

Figure 1.1 Frequently
asked questions about  and you don’t have to worry about writing program guides, documenting the pro-
software engineering gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.
Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1. Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”
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applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

Software engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively
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Product characteristic Description

Acceptability

Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including

Efficiency

Maintainability

reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

Figure 1.2 Essential
attributes of good
software

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2. It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as
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a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1. Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the
customer requires.

4. Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1. Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2. System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:
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1.1.2

1. Heterogeneity Increasingly, systems are required to operate as distributed sys-
tems across networks that include different types of computer and mobile
devices. As well as running on general-purpose computers, software may also
have to execute on mobile phones and tablets. You often have to integrate new
software with older legacy systems written in different programming languages.
The challenge here is to develop techniques for building dependable software
that is flexible enough to cope with this heterogeneity.

2. Business and social change Businesses and society are changing incredibly
quickly as emerging economies develop and new technologies become availa-
ble. They need to be able to change their existing software and to rapidly
develop new software. Many traditional software engineering techniques are
time consuming, and delivery of new systems often takes longer than planned.
They need to evolve so that the time required for software to deliver value to its
customers is reduced.

3. Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot successfully attack our software and that
information security is maintained.

4. Scale Software has to be developed across a very wide range of scales, from
very small embedded systems in portable or wearable devices through to
Internet-scale, cloud-based systems that serve a global community.

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

Software engineering diversity

Software engineering is a systematic approach to the production of software
that takes into account practical cost, schedule, and dependability issues, as
well as the needs of software customers and producers. The specific methods,
tools, and techniques used depend on the organization developing the software,
the type of software, and the people involved in the development process. There
are no universal software engineering methods that are suitable for all systems
and all companies. Rather, a diverse set of software engineering methods and
tools has evolved over the past 50 years. However, the SEMAT initiative
(Jacobson et al. 2013) proposes that there can be a fundamental meta-process
that can be instantiated to create different kinds of process. This is at an early
stage of development and may be a basis for improving our current software
engineering methods.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application being devel-
oped. There are many different types of application, including:



1.1 m Professional software development 25

Stand-alone applications These are application systems that run on a personal
computer or apps that run on a mobile device. They include all necessary func-
tionality and may not need to be connected to a network. Examples of such
applications are office applications on a PC, CAD programs, photo manipula-
tion software, travel apps, productivity apps, and so on.

Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own computers,
phones, or tablets. Obviously, these include web applications such as e-commerce
applications where you interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls antilock braking in a
car, and software in a microwave oven to control the cooking process.

Batch processing systems These are business systems that are designed to pro-
cess data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems are periodic billing
systems, such as phone billing systems, and salary payment systems.

Entertainment systems These are systems for personal use that are intended to
entertain the user. Most of these systems are games of one kind or another,
which may run on special-purpose console hardware. The quality of the user
interaction offered is the most important distinguishing characteristic of enter-
tainment systems.

Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which include
many separate, interacting objects. These are often computationally intensive
and require high-performance parallel systems for execution.

Data collection and analysis systems Data collection systems are systems that
collect data from their environment and send that data to other systems for pro-
cessing. The software may have to interact with sensors and often is installed in
a hostile environment such as inside an engine or in a remote location. “Big
data” analysis may involve cloud-based systems carrying out statistical analysis
and looking for relationships in the collected data.

Systems of systems These are systems, used in enterprises and other large organ-
izations, that are composed of a number of other software systems. Some of
these may be generic software products, such as an ERP system. Other systems
in the assembly may be specially written for that environment.
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Of course, the boundaries between these system types are blurred. If you develop
a game for a phone, you have to take into account the same constraints (power, hard-
ware interaction) as the developers of the phone software. Batch processing systems
are often used in conjunction with web-based transaction systems. For example, in a
company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

Each type of system requires specialized software engineering techniques because
the software has different characteristics. For example, an embedded control system
in an automobile is safety-critical and is burned into ROM (read-only memory)
when installed in the vehicle. It is therefore very expensive to change. Such a system
needs extensive verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized. User interaction is minimal
(or perhaps nonexistent), so there is no need to use a development process that relies
on user interface prototyping.

For an interactive web-based system or app, iterative development and delivery is
the best approach, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software systems:

1. They should be developed using a managed and understood development pro-
cess. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, the specific process that you should use depends on the type
of software that you are developing.

2. Dependability and performance are important for all types of system. Software
should behave as expected, without failures, and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3. Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different custom-
ers and users of the system expect from it, and you have to manage their expec-
tations so that a useful system can be delivered within budget and to schedule.

4. You should make effective use of existing resources. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

These fundamental notions of process, dependability, requirements, manage-
ment, and reuse are important themes of this book. Different methods reflect them in
different ways, but they underlie all professional software development.
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1.1.3

These fundamentals are independent of the program language used for software
development. I don’t cover specific programming techniques in this book because
these vary dramatically from one type of system to another. For example, a dynamic
language, such as Ruby, is the right type of language for interactive system develop-
ment but is inappropriate for embedded systems engineering.

Internet software engineering

The development of the Internet and the World Wide Web has had a profound
effect on all of our lives. Initially, the web was primarily a universally accessible
information store, and it had little effect on software systems. These systems ran
on local computers and were only accessible from within an organization. Around
2000, the web started to evolve, and more and more functionality was added to
browsers. This meant that web-based systems could be developed where, instead
of a special-purpose user interface, these systems could be accessed using a web
browser. This led to the development of a vast range of new system products that
delivered innovative services, accessed over the web. These are often funded by
adverts that are displayed on the user’s screen and do not involve direct payment
from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC.
It also reduced costs, as user interface development is particularly expensive.
Wherever it has been possible to do so, businesses have moved to web-based inter-
action with company software systems.

The notion of software as a service (Chapter 17) was proposed early in the 21st
century This has now become the standard approach to the delivery of web-based
system products such as Google Apps, Microsoft Office 365, and Adobe Creative
Suite. More and more software runs on remote “clouds” instead of local servers and
is accessed over the Internet. A computing cloud is a huge number of linked com-
puter systems that is shared by many users. Users do not buy software but pay
according to how much the software is used or are given free access in return for
watching adverts that are displayed on their screen. If you use services such as web-
based mail, storage, or video, you are using a cloud-based system.

The advent of the web has led to a dramatic change in the way that business soft-
ware is organized. Before the web, business applications were mostly monolithic,
single programs running on single computers or computer clusters. Communications
were local, within an organization. Now, software is highly distributed, sometimes
across the world. Business applications are not programmed from scratch but involve
extensive reuse of components and programs.

This change in software organization has had a major effect on software engi-
neering for web-based systems. For example:
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1. Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from preexisting software components and systems, often bundled together
in a framework.

2. It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems are always developed
and delivered incrementally.

3. Software may be implemented using service-oriented software engineering,
where the software components are stand-alone web services. I discuss this
approach to software engineering in Chapter 18.

4. Interface development technology such as AJAX (Holdener 2008) and HTMLS
(Freeman 2011) have emerged that support the creation of rich interfaces within
a web browser.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software, as they do to other types of software. Web-based sys-
tems are getting larger and larger, so software engineering techniques that deal with
scale and complexity are relevant for these systems.

W Software engineering ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your employ-
ers or clients regardless of whether or not a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be careful
to ensure that the intellectual property of employers and clients is protected.
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Software Engineering Code of Ethics and Professional Practice
ACMY/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as soft-
ware engineering professionals. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspirations and the details form
a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development, test-
ing, and maintenance of software a beneficial and respected profession. In accordance with their commitment
to the health, safety, and welfare of the public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the
best interests of their client and employer consistent with the public interest.

3. PRODUCT — Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4. JUDGMENT — Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and

maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.
7. COLLEAGUES — Software engineers shall be fair to and supportive of their

colleagues.

8. SELF — Software engineers shall participate in 1ifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

Figure 1.3 The ACM/
IEEE Code of Ethics
(ACM/IEEE-CS Joint
Task Force on Software
Engineering Ethics and
Professional Practices,
short version. http://
www.acm.org/about/
se-code)

(© 1999 by the ACM,
Inc. and the IEEE, Inc.)

Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine) to extremely serious (dissemination of viruses or
other malware).

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn, Miller, and Rogerson
1999) that adds detail and substance to the shorter version. The rationale behind this
code is summarized in the first two paragraphs of the longer form:
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Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice’.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obliga-
tions of anyone claiming to be or aspiring to be a software engineer:.

In any situation where different people have different views and objectives, you are
likely to be faced with ethical dilemmas. For example, if you disagree, in principle, with
the policies of more senior management in the company, how should you react? Clearly,
this depends on the people involved and the nature of the disagreement. Is it best to argue
a case for your position from within the organization or to resign in principle? If you feel
that there are problems with a software project, when do you reveal these problems to
management? If you discuss these while they are just a suspicion, you may be overreact-
ing to a situation; if you leave it too long, it may be impossible to resolve the difficulties.

We all face such ethical dilemmas in our professional lives, and, fortunately, in
most cases they are either relatively minor or can be resolved without too much dif-
ficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A difficult situation for professional engineers arises when their employer acts in
an unethical way. Say a company is responsible for developing a safety-critical
system and, because of time pressure, falsifies the safety validation records. Is the
engineer’s responsibility to maintain confidentiality or to alert the customer or
publicize, in some way, that the delivered system may be unsafe?

fACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, short
version Preamble. http://www.acm.org/about/se-code Copyright © 1999 by the Association for
Computing Machinery, Inc. and the Institute for Electrical and Electronics Engineers, Inc.
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The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these
criteria may be too strict. The system may actually operate safely throughout its life-
time. It is also the case that, even when properly validated, the system may fail and
cause an accident. Early disclosure of problems may result in damage to the employer
and other employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends on the views of the people involved. The potential for damage, the
extent of the damage, and the people affected by the damage should influence the
decision. If the situation is very dangerous, it may be justified to publicize it using
the national press or social media. However, you should always try to resolve the
situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate in
any systems development associated with defense systems. Others will work on mili-
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

In this situation, it is important that both employers and employees should make
their views known to each other in advance. Where an organization is involved in
military or nuclear work, it should be able to specify that employees must be willing
to accept any work assignment. Equally, if an employee is taken on and makes clear
that he or she does not wish to work on such systems, employers should not exert
pressure to do so at some later date.

The general area of ethics and professional responsibility is increasingly important
as software-intensive systems pervade every aspect of work and everyday life. It can
be considered from a philosophical standpoint where the basic principles of ethics are
considered and software engineering ethics are discussed with reference to these
basic principles. This is the approach taken by Laudon (Laudon 1995) and Johnson
(Johnson 2001). More recent texts such as that by Tavani (Tavani 2013) introduce the
notion of cyberethics and cover both the philosophical background and practical and
legal issues. They include ethical issues for technology users as well as developers.

I find that a philosophical approach is too abstract and difficult to relate to every-
day experience so I prefer the more concrete approach embodied in professional
codes of conduct (Bott 2005; Duquenoy 2007). I think that ethics are best discussed
in a software engineering context and not as a subject in its own right. Therefore, I
do not discuss software engineering ethics in an abstract way but include examples
in the exercises that can be the starting point for a group discussion.

%) Case studies

To illustrate software engineering concepts, I use examples from four different types
of system. I have deliberately not used a single case study, as one of the key messages
in this book is that software engineering practice depends on the type of systems
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1.3.1

being produced. I therefore choose an appropriate example when discussing con-
cepts such as safety and dependability, system modeling, reuse, etc.
The system types that I use as case studies are:

1. An embedded system This is a system where the software controls some hard-
ware device and is embedded in that device. Issues in embedded systems typi-
cally include physical size, responsiveness, and power management, etc. The
example of an embedded system that I use is a software system to control an
insulin pump for people who have diabetes.

2. An information system The primary purpose of this type of system is to manage
and provide access to a database of information. Issues in information systems
include security, usability, privacy, and maintaining data integrity. The example
of an information system used is a medical records system.

3. A sensor-based data collection system This is a system whose primary purposes
are to collect data from a set of sensors and to process that data in some way.
The key requirements of such systems are reliability, even in hostile environ-
mental conditions, and maintainability. The example of a data collection system
that I use is a wilderness weather station.

4. A support environment. This is an integrated collection of software tools that are
used to support some kind of activity. Programming environments, such as
Eclipse (Vogel 2012) will be the most familiar type of environment for readers
of this book. I describe an example here of a digital learning environment that
is used to support students’ learning in schools.

I introduce each of these systems in this chapter; more information about each of
them is available on the website (software-engineering-book.com).

An insulin pump control system

An insulin pump is a medical system that simulates the operation of the pancreas (an
internal organ). The software controlling this system is an embedded system that
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user.

People who suffer from diabetes use the system. Diabetes is a relatively common
condition in which the human pancreas is unable to produce sufficient quantities of
a hormone called insulin. Insulin metabolizes glucose (sugar) in the blood. The con-
ventional treatment of diabetes involves regular injections of genetically engineered
insulin. Diabetics measure their blood sugar levels periodically using an external
meter and then estimate the dose of insulin they should inject.

The problem is that the level of insulin required does not just depend on the blood
glucose level but also on the time of the last insulin injection. Irregular checking can
lead to very low levels of blood glucose (if there is too much insulin) or very high
levels of blood sugar (if there is too little insulin). Low blood glucose is, in the short
term, a more serious condition as it can result in temporary brain malfunctioning and,



1.3 m Case studies 33
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ultimately, unconsciousness and death. In the long term, however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.

Advances in developing miniaturized sensors have meant that it is now possible
to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery
systems like this one are now available and are used by patients who find it difficult
to control their insulin levels. In future, it may be possible for diabetics to have such
systems permanently attached to their bodies.

A software-controlled insulin delivery system uses a microsensor embedded in
the patient to measure some blood parameter that is proportional to the sugar level.
This is then sent to the pump controller. This controller computes the sugar level and
the amount of insulin that is needed. It then sends signals to a miniaturized pump to
deliver the insulin via a permanently attached needle.

Figure 1.4 shows the hardware components and organization of the insulin pump.
To understand the examples in this book, all you need to know is that the blood sensor
measures the electrical conductivity of the blood under different conditions and that
these values can be related to the blood sugar level. The insulin pump delivers one unit
of insulin in response to a single pulse from a controller. Therefore, to deliver 10 units
of insulin, the controller sends 10 pulses to the pump. Figure 1.5 is a Unified Modeling
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Language (UML) activity model that illustrates how the software transforms an input
blood sugar level to a sequence of commands that drive the insulin pump.

Clearly, this is a safety-critical system. If the pump fails to operate or does not
operate correctly, then the user’s health may be damaged or they may fall into a
coma because their blood sugar levels are too high or too low. This system must
therefore meet two essential high-level requirements:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

The system must therefore be designed and implemented to ensure that it always
meets these requirements. More detailed requirements and discussions of how to
ensure that the system is safe are discussed in later chapters.

A patient information system for mental health care

A patient information system to support mental health care (the Mentcare system) is a
medical information system that maintains information about patients suffering from
mental health problems and the treatments that they have received. Most mental
health patients do not require dedicated hospital treatment but need to attend special-
ist clinics regularly where they can meet a doctor who has detailed knowledge of their
problems. To make it easier for patients to attend, these clinics are not just run in
hospitals. They may also be held in local medical practices or community centers.
The Mentcare system (Figure 1.6) is a patient information system that is intended
for use in clinics. It makes use of a centralized database of patient information but
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has also been designed to run on a laptop, so that it may be accessed and used from
sites that do not have secure network connectivity. When the local systems have
secure network access, they use patient information in the database, but they can
download and use local copies of patient records when they are disconnected. The
system is not a complete medical records system and so does not maintain informa-
tion about other medical conditions. However, it may interact and exchange data
with other clinical information systems.
This system has two purposes:

1. To generate management information that allows health service managers to
assess performance against local and government targets.

2. To provide medical staff with timely information to support the treatment of
patients.

Patients who suffer from mental health problems are sometimes irrational and
disorganized so may miss appointments, deliberately or accidentally lose prescriptions
and medication, forget instructions and make unreasonable demands on medical
staff. They may drop in on clinics unexpectedly. In a minority of cases, they may be
a danger to themselves or to other people. They may regularly change address or
may be homeless on a long-term or short-term basis. Where patients are dangerous,
they may need to be “sectioned”—that is, confined to a secure hospital for treatment
and observation.

Users of the system include clinical staff such as doctors, nurses, and health visi-
tors (nurses who visit people at home to check on their treatment). Nonmedical users
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.

The system is used to record information about patients (name, address, age, next
of kin, etc.), consultations (date, doctor seen, subjective impressions of the patient,
etc.), conditions, and treatments. Reports are generated at regular intervals for medi-
cal staff and health authority managers. Typically, reports for medical staff focus on
information about individual patients, whereas management reports are anonymized
and are concerned with conditions, costs of treatment, etc.

The key features of the system are:

1. Individual care management Clinicians can create records for patients, edit the
information in the system, view patient history, and so on. The system supports
data summaries so that doctors who have not previously met a patient can
quickly learn about the key problems and treatments that have been prescribed.

2. Patient monitoring The system regularly monitors the records of patients that
are involved in treatment and issues warnings if possible problems are detected.
Therefore, if a patient has not seen a doctor for some time, a warning may be
issued. One of the most important elements of the monitoring system is to keep
track of patients who have been sectioned and to ensure that the legally required
checks are carried out at the right time.
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3. Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, the number of patients sectioned, the
drugs prescribed and their costs, etc.

Two different laws affect the system: laws on data protection that govern the con-
fidentiality of personal information and mental health laws that govern the compul-
sory detention of patients deemed to be a danger to themselves or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to strict legislative safe-
guards. One aim of the Mentcare system is to ensure that staff always act in accord-
ance with the law and that their decisions are recorded for judicial review if necessary.

As in all medical systems, privacy is a critical system requirement. It is essential
that patient information is confidential and is never disclosed to anyone apart from
authorized medical staff and the patient themselves. The Mentcare system is also a
safety-critical system. Some mental illnesses cause patients to become suicidal or a
danger to other people. Wherever possible, the system should warn medical staff
about potentially suicidal or dangerous patients.

The overall design of the system has to take into account privacy and safety
requirements. The system must be available when needed; otherwise safety may be
compromised, and it may be impossible to prescribe the correct medication to patients.
There is a potential conflict here. Privacy is easiest to maintain when there is only a
single copy of the system data. However, to ensure availability in the event of server
failure or when disconnected from a network, multiple copies of the data should be
maintained. I discuss the trade-offs between these requirements in later chapters.

A wilderness weather station

To help monitor climate change and to improve the accuracy of weather forecasts in
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col-
lect data from a set of instruments that measure temperature and pressure, sunshine,
rainfall, wind speed and wind direction.

Wilderness weather stations are part of a larger system (Figure 1.7), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The systems in Figure 1.7 are:

1. The weather station system This system is responsible for collecting weather
data, carrying out some initial data processing, and transmitting it to the data
management system.

2. The data management and archiving system This system collects the data from
all of the wilderness weather stations, carries out data processing and analysis,
and archives the data in a form that can be retrieved by other systems, such as
weather forecasting systems.
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Figure 1.7 The weather
station’s environment
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3. The station maintenance system This system can communicate by satellite with
all wilderness weather stations to monitor the health of these systems and pro-
vide reports of problems. It can update the embedded software in these systems.
In the event of system problems, this system can also be used to remotely con-
trol the weather station.

In Figure 1.7, I have used the UML package symbol to indicate that each system is
a collection of components and the separate systems are identified using the UML
stereotype «system». The associations between the packages indicate there is an exchange
of information but, at this stage, there is no need to define them in any more detail.

The weather stations include instruments that measure weather parameters such
as wind speed and direction, ground and air temperatures, barometric pressure, and
rainfall over a 24-hour period. Each of these instruments is controlled by a software
system that takes parameter readings periodically and manages the data collected
from the instruments.

The weather station system operates by collecting weather observations at fre-
quent intervals; for example, temperatures are measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather station carries
out some local processing and aggregation of the data. It then transmits this aggre-
gated data when requested by the data collection system. If it is impossible to make
a connection, then the weather station maintains the data locally until communica-
tion can be resumed.

Each weather station is battery-powered and must be entirely self-contained; there
are no external power or network cables. All communications are through a relatively
slow satellite link, and the weather station must include some mechanism (solar or
wind power) to charge its batteries. As they are deployed in wilderness areas, they are
exposed to severe environmental conditions and may be damaged by animals. The
station software is therefore not just concerned with data collection. It must also:

1. Monitor the instruments, power. and communication hardware and report faults
to the management system.

2. Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.
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3. Allow for dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the system
in the event of system failure.

Because weather stations have to be self-contained and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.

1.3.4 Adigital learning environment for schools

Many teachers argue that using interactive software systems to support education
can lead to both improved learner motivation and a deeper level of knowledge and
understanding in students. However, there is no general agreement on the ‘best’
strategy for computer-supported learning, and teachers in practice use a range of dif-
ferent interactive, web-based tools to support learning. The tools used depend on the
ages of the learners, their cultural background, their experience with computers,
equipment available, and the preferences of the teachers involved.

A digital learning environment is a framework in which a set of general-purpose
and specially designed tools for learning may be embedded, plus a set of applica-
tions that are geared to the needs of the learners using the system. The framework
provides general services such as an authentication service, synchronous and asyn-
chronous communication services, and a storage service.

The tools included in each version of the environment are chosen by teachers and
learners to suit their specific needs. These can be general applications such as spread-
sheets, learning management applications such as a Virtual Learning Environment
(VLE) to manage homework submission and assessment, games, and simulations.
They may also include specific content, such as content about the American Civil
War and applications to view and annotate that content.

Figure 1.8 is a high-level architectural model of a digital learning environment
(iLearn) that was designed for use in schools for students from 3 to 18 years of
age. The approach adopted is that this is a distributed system in which all compo-
nents of the environment are services that can be accessed from anywhere on the
Internet. There is no requirement that all of the learning tools are gathered together
in one place.

The system is a service-oriented system with all system components considered
to be a replaceable service. There are three types of service in the system:

1. Utility services that provide basic application-independent functionality and
that may be used by other services in the system. Utility services are usually
developed or adapted specifically for this system.

2. Application services that provide specific applications such as email, conferencing,
photo sharing, etc., and access to specific educational content such as scientific
films or historical resources. Application services are external services that are
either specifically purchased for the system or are available freely over the Internet.
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Figure 1.8 The
architecture of a
digital learning
environment (iLearn)
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3. Configuration services that are used to adapt the environment with a specific set
of application services and to define how services are shared between students,
teachers, and their parents.

The environment has been designed so that services can be replaced as new ser-
vices become available and to provide different versions of the system that are suited
for the age of the users. This means that the system has to support two levels of ser-
vice integration:

1. Integrated services are services that offer an API (application programming
interface) and that can be accessed by other services through that API. Direct
service-to-service communication is therefore possible. An authentication ser-
vice is an example of an integrated service. Rather than use their own authenti-
cation mechanisms, an authentication service may be called on by other services
to authenticate users. If users are already authenticated, then the authentication
service may pass authentication information directly to another service, via an
API, with no need for users to reauthenticate themselves.

2. Independent services are services that are simply accessed through a browser
interface and that operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and
paste; reauthentication may be required for each independent service.

If an independent service becomes widely used, the development team may then
integrate that service so that it becomes an integrated and supported service.
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KEY POINTS

Software engineering is an engineering discipline that is concerned with all aspects of software
production.

Software is not just a program or programs but also includes all electronic documentation that
is needed by system users, quality assurance staff, and developers. Essential software product
attributes are maintainability, dependability and security, efficiency, and acceptability.

The software process includes all of the activities involved in software development. The high-level
activities of specification, development, validation, and evolution are part of all software processes.

There are many different types of system, and each requires appropriate software engineering
tools and techniques for their development. Few, if any, specific design and implementation
techniques are applicable to all kinds of system.

The fundamental ideas of software engineering are applicable to all types of software system.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues but should be aware of the ethical issues that
affect their work.

Professional societies publish codes of conduct that embed ethical and professional standards.
These set out the standards of behavior expected of their members.

FURTHER READING

“Software Engineering Code of Ethics Is Approved.” An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and that includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, K. Miller, and S. Rogerson, October 1999). http://dx.doi.
org/10.1109/MC.1999.796142

“A View of 20th and 21st Century Software Engineering.” A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering Conf., Shanghai. 2006). http://dx.doi.
0rg/10.1145/1134285.1134288

“Software Engineering Ethics.” Special issue of IEEE Computer, with several papers on the topic
(IEEE Computer, 42 (6), June 2009).

Ethics for the Information Age. This is a wide-ranging book that covers all aspects of information
technology (IT) ethics, not simply ethics for software engineers. | think this is the right approach
as you really need to understand software engineering ethics within a wider ethical framework
(M. ). Quinn, 2013, Addison-Wesley).


http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288
http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288
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The Essence of Software Engineering: Applying the SEMAT kernel. This book discusses the idea of a
universal framework that can underlie all software engineering methods. It can be adapted and
used for all types of systems and organizations. | am personally skeptical about whether or not a
universal approach is realistic in practice, but the book has some interesting ideas that are worth
exploring. (I. Jacobsen, P-W Ng, P. E. McMahon, I. Spence, and S. Lidman, 2013, Addison-Wesley)

WEBSITE

PowerPoint slides for this chapter:
www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:
http://software-engineering-book.com/videos/software-engineering/
Links to case study descriptions:

http://software-engineering-book.com/case-studies/

EXERCISES

1.1. Explain why professional software that is developed for a customer is not simply the
programs that have been developed and delivered.

1.2. What is the most important difference between generic software product development and custom
software development? What might this mean in practice for users of generic software products?

1.3. Briefly discuss why it is usually cheaper in the long run to use software engineering methods
and techniques for software systems.

1.4. Software engineering is not only concerned with issues like system heterogeneity, business
and social change, trust, and security, but also with ethical issues affecting the domain. Give
some examples of ethical issues that have an impact on the software engineering domain.

1.5. Based on your own knowledge of some of the application types discussed in Section 1.1.2,
explain, with examples, why different application types require specialized software
engineering techniques to support their design and development.

1.6. Explain why the fundamental software engineering principles of process, dependability,
requirements management, and reuse are relevant to all types of software system.

1.7. Explain how electronic connectivity between various development teams can support
software engineering activities.

1.8. Noncertified individuals are still allowed to practice software engineering. Discuss some of the
possible drawbacks of this.


http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-engineering
http://software-engineering-book.com/case-studies
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1.9. For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.4, propose an
appropriate example that illustrates that clause.

1.10. The “Drone Revolution” is currently being debated and discussed all over the world. Drones
are unmanned flying machines that are built and equipped with various kinds of software
systems that allow them to see, hear, and act. Discuss some of the societal challenges of
building such kinds of systems.
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Software processes

Objectives

The objective of this chapter is to introduce you to the idea of a software
process—a coherent set of activities for software production. When you
have read this chapter, you will:

m understand the concepts of software processes and software
process models;

m have been introduced to three general software process models and
when they might be used;

m know about the fundamental process activities of software requirements
engineering, software development, testing, and evolution;

m understand why processes should be organized to cope with changes
in the software requirements and design;

m understand the notion of software process improvement and the
factors that affect software process quality.

Contents

2.1 Software process models
2.2 Process activities

2.3 Coping with change

2.4 Process improvement




44 Chapter?2

Software processes

A software process is a set of related activities that leads to the production of a soft-
ware system. As I discussed in Chapter 1, there are many different types of software
systems, and there is no universal software engineering method that is applicable to
all of them. Consequently, there is no universally applicable software process. The
process used in different companies depends on the type of software being devel-
oped, the requirements of the software customer, and the skills of the people writing
the software.

However, although there are many different software processes, they all must
include, in some form, the four fundamental software engineering activities that I
introduced in Chapter 1:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software development The software to meet the specification must be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4.  Software evolution The software must evolve to meet changing customer needs.

These activities are complex activities in themselves, and they include subactivi-
ties such as requirements validation, architectural design, and unit testing. Processes
also include other activities, such as software configuration management and project
planning that support production activities.

When we describe and discuss processes, we usually talk about the activities in
these processes, such as specifying a data model and designing a user interface, and
the ordering of these activities. We can all relate to what people do to develop soft-
ware. However, when describing processes, it is also important to describe who is
involved, what is produced, and conditions that influence the sequence of activities:

1. Products or deliverables are the outcomes of a process activity. For example, the
outcome of the activity of architectural design may be a model of the software
architecture.

2. Roles reflect the responsibilities of the people involved in the process. Examples
of roles are project manager, configuration manager, and programmer.

3. Pre- and postconditions are conditions that must hold before and after a process
activity has been enacted or a product produced. For example, before architec-
tural design begins, a precondition may be that the consumer has approved all
requirements; after this activity is finished, a postcondition might be that the
UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgments. As there is no universal process that
is right for all kinds of software, most software companies have developed their own
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development processes. Processes have evolved to take advantage of the capabilities
of the software developers in an organization and the characteristics of the systems
that are being developed. For safety-critical systems, a very structured development
process is required where detailed records are maintained. For business systems, with
rapidly changing requirements, a more flexible, agile process is likely to be better.

As I discussed in Chapter 1, professional Professional software development is a
managed activity, so planning is an inherent part of all processes. Plan-driven pro-
cesses are processes where all of the process activities are planned in advance and
progress is measured against this plan. In agile processes, which I discuss in Chapter 3,
planning is incremental and continual as the software is developed. It is therefore eas-
ier to change the process to reflect changing customer or product requirements. As
Boehm and Turner (Boehm and Turner 2004) explain, each approach is suitable for
different types of software. Generally, for large systems, you need to find a balance
between plan-driven and agile processes.

Although there is no universal software process, there is scope for process improve-
ment in many organizations. Processes may include outdated techniques or may not
take advantage of the best practice in industrial software engineering. Indeed, many
organizations still do not take advantage of software engineering methods in their
software development. They can improve their process by introducing techniques
such as UML modeling and test-driven development. I discuss software process
improvement briefly later in thischapter text and in more detail in web Chapter 26.

XY Software process models

As I explained in Chapter 1, a software process model (sometimes called a Software
Development Life Cycle or SDLC model) is a simplified representation of a soft-
ware process. Each process model represents a process from a particular perspective
and thus only provides partial information about that process. For example, a pro-
cess activity model shows the activities and their sequence but may not show the
roles of the people involved in these activities. In this section, I introduce a number
of very general process models (sometimes called process paradigms) and present
these from an architectural perspective. That is, we see the framework of the process
but not the details of process activities.

These generic models are high-level, abstract descriptions of software processes
that can be used to explain different approaches to software development. You can
think of them as process frameworks that may be extended and adapted to create
more specific software engineering processes.

The general process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design, implemen-
tation, and testing.



46 Chapter?2

Software processes

@ The Rational Unified Process

The Rational Unified Process (RUP) brings together elements of all of the general process models discussed
here and supports prototyping and incremental delivery of software (Krutchen 2003). The RUP is normally
described from three perspectives: a dynamic perspective that shows the phases of the model in time, a static
perspective that shows process activities, and a practice perspective that suggests good practices to be used in
the process. Phases of the RUP are inception, where a business case for the system is established; elaboration,
where requirements and architecture are developed; construction where the software is implemented; and
transition, where the system is deployed.

http://software-engineering-book.com/web/rup/

2. Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous version.

3. Integration and configuration This approach relies on the availability of reus-
able components or systems. The system development process focuses on
configuring these components for use in a new setting and integrating them
into a system.

As I have said, there is no universal process model that is right for all kinds of
software development. The right process depends on the customer and regulatory
requirements, the environment where the software will be used, and the type of soft-
ware being developed. For example, safety-critical software is usually developed
using a waterfall process as lots of analysis and documentation is required before
implementation begins. Software products are now always developed using an incre-
mental process model. Business systems are increasingly being developed by con-
figuring existing systems and integrating these to create a new system with the
functionality that is required.

The majority of practical software processes are based on a general model but
often incorporate features of other models. This is particularly true for large systems
engineering. For large systems, it makes sense to combine some of the best features
of all of the general processes. You need to have information about the essential
system requirements to design a software architecture to support these requirements.
You cannot develop this incrementally. Subsystems within a larger system may be
developed using different approaches. Parts of the system that are well understood
can be specified and developed using a waterfall-based process or may be bought in
as off-the-shelf systems for configuration. Other parts of the system, which are dif-
ficult to specify in advance, should always be developed using an incremental
approach. In both cases, software components are likely to be reused.

Various attempts have been made to develop “universal” process models that
draw on all of these general models. One of the best known of these universal models
is the Rational Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company. The RUP is a flexible model that
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waterfall model
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can be instantiated in different ways to create processes that resemble any of the
general process models discussed here. The RUP has been adopted by some large
software companies (notably IBM), but it has not gained widespread acceptance.

The waterfall model

The first published model of the software development process was derived from
engineering process models used in large military systems engineering (Royce
1970). It presents the software development process as a number of stages, as shown
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The waterfall model is an example of a
plan-driven process. In principle at least, you plan and schedule all of the process
activities before starting software development.

The stages of the waterfall model directly reflect the fundamental software devel-
opment activities:

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the funda-
mental software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.
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@ Boehm'’s spiral process model

Barry Boehm, one of the pioneers in software engineering, proposed an incremental process model that was
risk-driven. The process is represented as a spiral rather than a sequence of activities (Boehm 1988).

Each loop in the spiral represents a phase of the software process. Thus, the innermost loop might be con-
cerned with system feasibility, the next loop with requirements definition, the next loop with system design,
and so on. The spiral model combines change avoidance with change tolerance. It assumes that changes are
a result of project risks and includes explicit risk management activities to reduce these risks.

http://software-engineering-book.com/web/spiral-model/

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered
to the customer.

5. Operation and maintenance Normally, this is the longest life-cycle phase. The
system is installed and put into practical use. Maintenance involves correcting
errors that were not discovered in earlier stages of the life cycle, improving the
implementation of system units, and enhancing the system’s services as new
requirements are discovered.

In principle, the result of each phase in the waterfall model is one or more docu-
ments that are approved (“signed off””). The following phase should not start until
the previous phase has finished. For hardware development, where high manufactur-
ing costs are involved, this makes sense. However, for software development, these
stages overlap and feed information to each other. During design, problems with
requirements are identified; during coding design problems are found, and so on.
The software process, in practice, is never a simple linear model but involves feed-
back from one phase to another.

As new information emerges in a process stage, the documents produced at previ-
ous stages should be modified to reflect the required system changes. For example,
if it is discovered that a requirement is too expensive to implement, the requirements
document should be changed to remove that requirement. However, this requires
customer approval and delays the overall development process.

As a result, both customers and developers may prematurely freeze the software
specification so that no further changes are made to it. Unfortunately, this means that
problems are left for later resolution, ignored, or programmed around. Premature
freezing of requirements may mean that the system won’t do what the user wants. It
may also lead to badly structured systems as design problems are circumvented by
implementation tricks.

During the final life-cycle phase (operation and maintenance) the software is put
into use. Errors and omissions in the original software requirements are discovered.
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2.1.2

Program and design errors emerge, and the need for new functionality is identified.
The system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.

In reality, software has to be flexible and accommodate change as it is being
developed. The need for early commitment and system rework when changes are
made means that the waterfall model is only appropriate for some types of system:

1. Embedded systems where the software has to interface with hardware systems.
Because of the inflexibility of hardware, it is not usually possible to delay deci-
sions on the software’s functionality until it is being implemented.

2. Critical systems where there is a need for extensive safety and security analysis
of the software specification and design. In these systems, the specification and
design documents must be complete so that this analysis is possible. Safety-
related problems in the specification and design are usually very expensive to
correct at the implementation stage.

3. Large software systems that are part of broader engineering systems developed
by several partner companies. The hardware in the systems may be developed
using a similar model, and companies find it easier to use a common model for
hardware and software. Furthermore, where several companies are involved,
complete specifications may be needed to allow for the independent develop-
ment of different subsystems.

The waterfall model is not the right process model in situations where informal
team communication is possible and software requirements change quickly. Iterative
development and agile methods are better for these systems.

An important variant of the waterfall model is formal system development, where
a mathematical model of a system specification is created. This model is then refined,
using mathematical transformations that preserve its consistency, into executable
code. Formal development processes, such as that based on the B method (Abrial
2005, 2010), are mostly used in the development of software systems that have strin-
gent safety, reliability, or security requirements. The formal approach simplifies the
production of a safety or security case. This demonstrates to customers or regulators
that the system actually meets its safety or security requirements. However, because
of the high costs of developing a formal specification, this development model is
rarely used except for critical systems engineering.

Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, getting feedback from users and others, and evolving the software through
several versions until the required system has been developed (Figure 2.2).
Specification, development, and validation activities are interleaved rather than
separate, with rapid feedback across activities.
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Incremental development in some form is now the most common approach for
the development of application systems and software products. This approach can
be either plan-driven, agile or, more usually, a mixture of these approaches. In a
plan-driven approach, the system increments are identified in advance; if an agile
approach is adopted, the early increments are identified, but the development of
later increments depends on progress and customer priorities.

Incremental software development, which is a fundamental part of agile
development methods, is better than a waterfall approach for systems whose
requirements are likely to change during the development process. This is the
case for most business systems and software products. Incremental development
reflects the way that we solve problems. We rarely work out a complete prob-
lem solution in advance but move toward a solution in a series of steps, back-
tracking when we realize that we have made a mistake. By developing the
software incrementally, it is cheaper and easier to make changes in the software
as it is being developed.

Each increment or version of the system incorporates some of the functional-
ity that is needed by the customer. Generally, the early increments of the system
include the most important or most urgently required functionality. This means
that the customer or user can evaluate the system at a relatively early stage in
the development to see if it delivers what is required. If not, then only the cur-
rent increment has to be changed and, possibly, new functionality defined for
later increments.

Incremental development has three major advantages over the waterfall model:

1. The cost of implementing requirements changes is reduced. The amount of
analysis and documentation that has to be redone is significantly less than is
required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how
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@ Problems with incremental development

Although incremental development has many advantages, it is not problem free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and
there may be a mismatch between these procedures and a more informal iterative or agile process.

Sometimes these procedures are there for good reasons. For example, there may be procedures to ensure
that the software meets properly implements external regulations (e.g., in the United States, the Sarbanes
Oxley accounting regulations). Changing these procedures may not be possible, so process conflicts may
be unavoidable.

http://software-engineering-book.com/web/incremental-development/

much has been implemented. Customers find it difficult to judge progress from
software design documents.

3. Early delivery and deployment of useful software to the customer is possible,
even if all of the functionality has not been included. Customers are able to use
and gain value from the software earlier than is possible with a waterfall process.

From a management perspective, the incremental approach has two problems:

1. The process is not visible. Managers need regular deliverables to measure pro-
gress. If systems are developed quickly, it is not cost effective to produce docu-
ments that reflect every version of the system.

2. System structure tends to degrade as new increments are added. Regular change
leads to messy code as new functionality is added in whatever way is possible.
It becomes increasingly difficult and costly to add new features to a system. To
reduce structural degradation and general code messiness, agile methods sug-
gest that you should regularly refactor (improve and restructure) the software.

The problems of incremental development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture, and the responsi-
bilities of the different teams working on parts of the system need to be clearly
defined with respect to that architecture. This has to be planned in advance rather
than developed incrementally.

Incremental development does not mean that you have to deliver each increment
to the system customer. You can develop a system incrementally and expose it to
customers and other stakeholders for comment, without necessarily delivering it
and deploying it in the customer’s environment. Incremental delivery (covered in
Section 2.3.2) means that the software is used in real, operational processes, so user
feedback is likely to be realistic. However, providing feedback is not always possi-
ble as experimenting with new software can disrupt normal business processes.
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2.1.3 Integration and configuration

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of or search for code that is
similar to what is required. They look for these, modify them as needed, and integrate
them with the new code that they have developed.

This informal reuse takes place regardless of the development process that is
used. However, since 2000, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
base of reusable software components and an integrating framework for the compo-
sition of these components.

Three types of software components are frequently reused:

1. Stand-alone application systems that are configured for use in a particular envi-
ronment. These systems are general-purpose systems that have many features,
but they have to be adapted for use in a specific application.

2. Collections of objects that are developed as a component or as a package to be
integrated with a component framework such as the Java Spring framework
(Wheeler and White 2013).

3. Web services that are developed according to service standards and that are
available for remote invocation over the Internet.

Figure 2.3 shows a general process model for reuse-based development, based on
integration and configuration. The stages in this process are:

1. Requirements specification The initial requirements for the system are pro-
posed. These do not have to be elaborated in detail but should include brief
descriptions of essential requirements and desirable system features.

2. Software discovery and evaluation Given an outline of the software require-
ments, a search is made for components and systems that provide the func-
tionality required. Candidate components and systems are evaluated to see if
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@ Software development tools

Software development tools are programs that are used to support software engineering process activities.
These tools include requirements management tools, design editors, refactoring support tools, compilers,
debuggers, bug trackers, and system building tools.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed. For example:

B The development of graphical system models as part of the requirements specification or the software
design

The generation of code from these graphical models
The generation of user interfaces from a graphical interface description that is created interactively by the user

Program debugging through the provision of information about an executing program

The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate
in an integrated way.

http://software-engineering-book.com/web/software-tools/

they meet the essential requirements and if they are generally suitable for
use in the system.

3. Requirements refinement During this stage, the requirements are refined using
information about the reusable components and applications that have been
discovered. The requirements are modified to reflect the available compo-
nents, and the system specification is re-defined. Where modifications are
impossible, the component analysis activity may be reentered to search for
alternative solutions.

4. Application system configuration If an off-the-shelf application system that
meets the requirements is available, it may then be configured for use to create
the new system.

5. Component adaptation and integration If there is no off-the-shelf system, indi-
vidual reusable components may be modified and new components developed.
These are then integrated to create the system.

Reuse-oriented software engineering, based around configuration and integra-
tion, has the obvious advantage of reducing the amount of software to be developed
and so reducing cost and risks. It usually also leads to faster delivery of the software.
However, requirements compromises are inevitable, and this may lead to a system
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that does not meet the real needs of users. Furthermore, some control over the sys-
tem evolution is lost as new versions of the reusable components are not under the
control of the organization using them.

Software reuse is very important, and so several chapters in the third I have dedi-
cated several chapters in the 3rd part of the book to this topic. General issues of
software reuse are covered in Chapter 15, component-based software engineering in
Chapters 16 and 17, and service-oriented systems in Chapter 18.

¥ Process activities

2.2.1

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing,
and testing a software system. Generally, processes are now tool-supported. This
means that software developers may use a range of software tools to help them, such
as requirements management systems, design model editors, program editors, auto-
mated testing tools, and debuggers.

The four basic process activities of specification, development, validation, and
evolution are organized differently in different development processes. In the water-
fall model, they are organized in sequence, whereas in incremental development
they are interleaved. How these activities are carried out depends on the type of
software being developed, the experience and competence of the developers, and the
type of organization developing the software.

Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
particularly critical stage of the software process, as mistakes made at this stage
inevitably lead to later problems in the system design and implementation.

Before the requirements engineering process starts, a company may carry out a
feasibility or marketing study to assess whether or not there is a need or a market for
the software and whether or not it is technically and financially realistic to develop
the software required. Feasibility studies are short-term, relatively cheap studies that
inform the decision of whether or not to go ahead with a more detailed analysis.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.
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There are three main activities in the requirements engineering process:

1. Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

2. Requirements specification Requirements specification is the activity of trans-
lating the information gathered during requirements analysis into a document
that defines a set of requirements. Two types of requirements may be included
in this document. User requirements are abstract statements of the system
requirements for the customer and end-user of the system; system requirements
are a more detailed description of the functionality to be provided.

3. Requirements validation This activity checks the requirements for realism,
consistency, and completeness. During this process, errors in the require-
ments document are inevitably discovered. It must then be modified to correct
these problems.

Requirements analysis continues during definition and specification, and new
requirements come to light throughout the process. Therefore, the activities of analy-
sis, definition, and specification are interleaved.

In agile methods, requirements specification is not a separate activity but is seen
as part of system development. Requirements are informally specified for each
increment of the system just before that increment is developed. Requirements are
specified according to user priorities. The elicitation of requirements comes from
users who are part of or work closely with the development team.
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Software design and implementation

The implementation stage of software development is the process of developing
an executable system for delivery to the customer. Sometimes this involves sepa-
rate activities of software design and programming. However, if an agile approach
to development is used, design and implementation are interleaved, with no for-
mal design documents produced during the process. Of course, the software is
still designed, but the design is recorded informally on whiteboards and program-
mer’s notebooks.

A software design is a description of the structure of the software to be imple-
mented, the data models and structures used by the system, the interfaces between
system components and, sometimes, the algorithms used. Designers do not arrive at
a finished design immediately but develop the design in stages. They add detail as
they develop their design, with constant backtracking to modify earlier designs.

Figure 2.5 is an abstract model of the design process showing the inputs to the
design process, process activities, and the process outputs. The design process activ-
ities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design
rework is therefore inevitable.
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Most software interfaces with other software systems. These other systems
include the operating system, database, middleware, and other application systems.
These make up the “software platform,” the environment in which the software will
execute. Information about this platform is an essential input to the design process,
as designers must decide how best to integrate it with its environment. If the system
is to process existing data, then the description of that data may be included in the
platform specification. Otherwise, the data description must be an input to the design
process so that the system data organization can be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require an additional stage of timing design
but may not include a database, so there is no database design involved. Figure 2.5
shows four activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called subsystems or modules), their relation-
ships, and how they are distributed.

2. Database design, where you design the system data structures and how these are
to be represented in a database. Again, the work here depends on whether an
existing database is to be reused or a new database is to be created.

3. Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component may be used by other components without them having to know
how it is implemented. Once interface specifications are agreed, the compo-
nents can be separately designed and developed.

4. Component selection and design, where you search for reusable components
and, if no suitable components are available, design new software components.
The design at this stage may be a simple component description with the imple-
mentation details left to the programmer. Alternatively, it may be a list of
changes to be made to a reusable component or a detailed design model
expressed in the UML. The design model may then be used to automatically
generate an implementation.

These activities lead to the design outputs, which are also shown in Figure 2.5.
For critical systems, the outputs of the design process are detailed design documents
setting out precise and accurate descriptions of the system. If a model-driven
approach is used (Chapter 5), the design outputs are design diagrams. Where agile
methods of development are used, the outputs of the design process may not be
separate specification documents but may be represented in the code of the program.

The development of a program to implement a system follows naturally from
system design. Although some classes of program, such as safety-critical systems,
are usually designed in detail before any implementation begins, it is more common
for design and program development to be interleaved. Software development tools
may be used to generate a skeleton program from a design. This includes code to
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define and implement interfaces, and, in many cases, the developer need only add
details of the operation of each program component.

Programming is an individual activity, and there is no general process that is
usually followed. Some programmers start with components that they understand,
develop these, and then move on to less understood components. Others take the
opposite approach, leaving familiar components till last because they know how to
develop them. Some developers like to define data early in the process and then
use this to drive the program development; others leave data unspecified for as
long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects (bugs) that must be removed from the program.
Finding and fixing program defects is called debugging. Defect testing and debug-
ging are different processes. Testing establishes the existence of defects. Debugging
is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observa-
ble behavior of the program and then test these hypotheses in the hope of finding
the fault that caused the output anomaly. Testing the hypotheses may involve trac-
ing the program code manually. It may require new test cases to localize the prob-
lem. Interactive debugging tools, which show the intermediate values of program
variables and a trace of the statements executed, are usually used to support the
debugging process.

Software validation

Software validation or, more generally, verification and validation (V & V) is
intended to show that a system both conforms to its specification and meets the
expectations of the system customer. Program testing, where the system is executed
using simulated test data, is the principal validation technique. Validation may also
involve checking processes, such as inspections and reviews, at each stage of the
software process from user requirements definition to program development.
However, most V & V time and effort is spent on program testing.

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 2.6 shows a three-stage testing process in which system components are
individually tested, then the integrated system is tested. For custom software, cus-
tomer testing involves testing the system with real customer data. For products that
are sold as applications, customer testing is sometimes called beta testing where
selected users try out and comment on the software.
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The stages in the testing process are:

1. Component testing The components making up the system are tested by the people
developing the system. Each component is tested independently, without other
system components. Components may be simple entities such as functions or
object classes or may be coherent groupings of these entities. Test automation
tools, such as JUnit for Java, that can rerun tests when new versions of the
component are created, are commonly used (Koskela 2013).

2. System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multistage process where components are integrated to form
subsystems that are individually tested before these subsystems are integrated to
form the final system.

3. Customer testing This is the final stage in the testing process before the system
is accepted for operational use. The system is tested by the system customer (or
potential customer) rather than with simulated test data. For custom-built
software, customer testing may reveal errors and omissions in the system
requirements definition, because the real data exercise the system in different
ways from the test data. Customer testing may also reveal requirements problems
where the system’s facilities do not really meet the users’ needs or the system
performance is unacceptable. For products, customer testing shows how well
the software product meets the customer’s needs.

Ideally, component defects are discovered early in the testing process, and inter-
face problems are found when the system is integrated. However, as defects are dis-
covered, the program must be debugged, and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to
light during system testing. The process is therefore an iterative one with informa-
tion being fed back from later stages to earlier parts of the process.

Normally, component testing is simply part of the normal development process.
Programmers make up their own test data and incrementally test the code as it is
developed. The programmer knows the component and is therefore the best person
to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In test-driven development, which is a normal part of agile processes, tests are
developed along with the requirements before development starts. This helps the
testers and developers to understand the requirements and ensures that there are no
delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop-
ment), testing is driven by a set of test plans. An independent team of testers works
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P from these test plans, which have been developed from the system specification and

design. Figure 2.7 illustrates how test plans are the link between testing and develop-
ment activities. This is sometimes called the V-model of development (turn it on its
side to see the V). The V-model shows the software validation activities that corre-
spond to each stage of the waterfall process model.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may not
have been anticipated by the product developers. After this feedback, the software
product may be modified and released for further beta testing or general sale.

2.2.4 Software evolution

The flexibility of software is one of the main reasons why more and more software
is being incorporated into large, complex systems. Once a decision has been made to
manufacture hardware, it is very expensive to make changes to the hardware design.
However, changes can be made to software at any time during or after the system
development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software
development and the process of software evolution (software maintenance). People
think of software development as a creative activity in which a software system is
developed from an initial concept through to a working system. However, they
sometimes think of software maintenance as dull and uninteresting. They think
that software maintenance is less interesting and challenging than original soft-
ware development.

This distinction between development and maintenance is increasingly irrelevant.
Very few software systems are completely new systems, and it makes much more
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sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in
response to changing requirements and customer needs.

B0 Coping with change

Change is inevitable in all large software projects. The system requirements
change as businesses respond to external pressures, competition, and changed
management priorities. As new technologies become available, new approaches to
design and implementation become possible. Therefore whatever software pro-
cess model is used, it is essential that it can accommodate changes to the software
being developed.

Change adds to the costs of software development because it usually means
that work that has been completed has to be redone. This is called rework. For
example, if the relationships between the requirements in a system have been ana-
lyzed and new requirements are then identified, some or all of the requirements
analysis has to be repeated. It may then be necessary to redesign the system to
deliver the new requirements, change any programs that have been developed,
and retest the system.

Two related approaches may be used to reduce the costs of rework:

1. Change anticipation, where the software process includes activities that can
anticipate or predict possible changes before significant rework is required. For
example, a prototype system may be developed to show some key features of
the system to customers. They can experiment with the prototype and refine
their requirements before committing to high software production costs.

2. Change tolerance, where the process and software are designed so that changes
can be easily made to the system. This normally involves some form of incre-
mental development. Proposed changes may be implemented in increments that
have not yet been developed. If this is impossible, then only a single increment
(a small part of the system) may have to be altered to incorporate the change.
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2.3.1

In this section, I discuss two ways of coping with change and changing system
requirements:

1. System prototyping, where a version of the system or part of the system is
developed quickly to check the customer’s requirements and the feasibility of
design decisions. This is a method of change anticipation as it allows users to
experiment with the system before delivery and so refine their requirements.
The number of requirements change proposals made after delivery is therefore
likely to be reduced.

2. Incremental delivery, where system increments are delivered to the customer
for comment and experimentation. This supports both change avoidance and
change tolerance. It avoids the premature commitment to requirements for the
whole system and allows changes to be incorporated into later increments at
relatively low cost.

The notion of refactoring, namely, improving the structure and organization of a
program, is also an important mechanism that supports change tolerance. I discuss
this in Chapter 3 (Agile methods).

Prototyping

A prototype is an early version of a software system that is used to demonstrate con-
cepts, try out design options, and find out more about the problem and its possible
solutions. Rapid, iterative development of the prototype is essential so that costs are
controlled and system stakeholders can experiment with the prototype early in the
software process.

A software prototype can be used in a software development process to help
anticipate changes that may be required:

1. In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2. In the system design process, a prototype can be used to explore software solu-
tions and in the development of a user interface for the system.

System prototypes allow potential users to see how well the system supports their
work. They may get new ideas for requirements and find areas of strength and weak-
ness in the software. They may then propose new system requirements. Furthermore,
as the prototype is developed, it may reveal errors and omissions in the system
requirements. A feature described in a specification may seem to be clear and useful.
However, when that function is combined with other functions, users often find that
their initial view was incorrect or incomplete. The system specification can then be
modified to reflect the changed understanding of the requirements.
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A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Rapid prototyping with end-user involve-
ment is the only sensible way to develop user interfaces. Because of the dynamic
nature of user interfaces, textual descriptions and diagrams are not good enough for
expressing the user interface requirements and design.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop the user interface, to develop a system to validate functional
system requirements, or to develop a system to demonstrate the application to man-
agers. The same prototype usually cannot meet all objectives. If the objectives are
left unstated, management or end-users may misunderstand the function of the pro-
totype. Consequently, they may not get the benefits that they expected from the
prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be
made during this stage for user training, and the prototype objectives should
be used to derive a plan for evaluation. Potential users need time to become
comfortable with a new system and to settle into a normal pattern of usage. Once
they are using the system normally, they then discover requirements errors
and omissions. A general problem with prototyping is that users may not use the
prototype in the same way as they use the final system. Prototype testers may
not be typical of system users. There may not be enough time to train users
during prototype evaluation. If the prototype is slow, the evaluators may adjust
their way of working and avoid those system features that have slow response
times. When provided with better response in the final system, they may use it in
a different way.
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Incremental delivery

Incremental delivery (Figure 2.10) is an approach to software development where
some of the developed increments are delivered to the customer and deployed for
use in their working environment. In an incremental delivery process, customers
define which of the services are most important and which are least important to
them. A number of delivery increments are then defined, with each increment pro-
viding a subset of the system functionality. The allocation of services to increments
depends on the service priority, with the highest priority services implemented and
delivered first.

Once the system increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail and that incre-
ment is developed. During development, further requirements analysis for later
increments can take place, but requirements changes for the current increment
are not accepted.

Once an increment is completed and delivered, it is installed in the customer’s
normal working environment. They can experiment with the system, and this helps
them clarify their requirements for later system increments. As new increments are
completed, they are integrated with existing increments so that system functionality
improves with each delivered increment.

Incremental delivery has a number of advantages:

1. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments. Unlike prototypes,
these are part of the real system, so there is no relearning when the complete
system is available.

2. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments, so they can use the software immediately.

3. The process maintains the benefits of incremental development in that it should
be relatively easy to incorporate changes into the system.
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4. As the highest priority services are delivered first and later increments then inte-
grated, the most important system services receive the most testing. This means
that customers are less likely to encounter software failures in the most impor-
tant parts of the system.

However, there are problems with incremental delivery. In practice, it only works in
situations where a brand-new system is being introduced and the system evaluators are
given time to experiment with the new system. Key problems with this approach are:

1. Iterative delivery is problematic when the new system is intended to replace an
existing system. Users need all of the functionality of the old system and are
usually unwilling to experiment with an incomplete new system. It is often
impractical to use the old and the new systems alongside each other as they are
likely to have different databases and user interfaces.

2. Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be imple-
mented, it can be hard to identify common facilities that are needed by all increments.

3. The essence of iterative processes is that the specification is developed in con-
junction with the software. However, this conflicts with the procurement model
of many organizations, where the complete system specification is part of the
system development contract. In the incremental approach, there is no complete
system specification until the final increment is specified. This requires a new
form of contract, which large customers such as government agencies may find
difficult to accommodate.

For some types of systems, incremental development and delivery is not the best
approach. These are very large systems where development may involve teams working
in different locations, some embedded systems where the software depends on hardware
development, and some critical systems where all the requirements must be analyzed to
check for interactions that may compromise the safety or security of the system.

These large systems, of course, suffer from the same problems of uncertain and
changing requirements. Therefore, to address these problems and get some of the
benefits of incremental development, a system prototype may be developed and used
as a platform for experiments with the system requirements and design. With the
experience gained from the prototype, definitive requirements can then be agreed.

Process improvement

Nowadays, there is a constant demand from industry for cheaper, better software,
which has to be delivered to ever-tighter deadlines. Consequently, many software
companies have turned to software process improvement as a way of enhancing the
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Figure 2.11 The process
improvement cycle
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quality of their software, reducing costs, or accelerating their development pro-
cesses. Process improvement means understanding existing processes and changing
these processes to increase product quality and/or reduce costs and development
time. I cover general issues of process measurement and process improvement in
detail in web Chapter 26.

Two quite different approaches to process improvement and change are used:

1. The process maturity approach, which has focused on improving process and
project management and introducing good software engineering practice into an
organization. The level of process maturity reflects the extent to which good
technical and management practice has been adopted in organizational software
development processes. The primary goals of this approach are improved prod-
uct quality and process predictability.

2. The agile approach, which has focused on iterative development and the reduc-
tion of overheads in the software process. The primary characteristics of agile
methods are rapid delivery of functionality and responsiveness to changing cus-
tomer requirements. The improvement philosophy here is that the best processes
are those with the lowest overheads and agile approaches can achieve this.
I describe agile approaches in Chapter 3.

People who are enthusiastic about and committed to each of these approaches are
generally skeptical of the benefits of the other. The process maturity approach is
rooted in plan-driven development and usually requires increased “overhead,” in the
sense that activities are introduced that are not directly relevant to program develop-
ment. Agile approaches focus on the code being developed and deliberately mini-
mize formality and documentation.

The general process improvement process underlying the process maturity
approach is a cyclical process, as shown in Figure 2.11. The stages in this process are:

1. Process measurement You measure one or more attributes of the software pro-
cess or product. These measurements form a baseline that helps you decide if
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process improvements have been effective. As you introduce improvements, you
re-measure the same attributes, which will hopefully have improved in some way.

2. Process analysis The current process is assessed, and process weaknesses and
bottlenecks are identified. Process models (sometimes called process maps) that
describe the process may be developed during this stage. The analysis may be
focused by considering process characteristics such as rapidity and robustness.

3. Process change Process changes are proposed to address some of the identified
process weaknesses. These are introduced, and the cycle resumes to collect data
about the effectiveness of the changes.

Without concrete data on a process or the software developed using that process, it
is impossible to assess the value of process improvement. However, companies starting
the process improvement process are unlikely to have process data available as an
improvement baseline. Therefore, as part of the first cycle of changes, you may have to
collect data about the software process and to measure software product characteristics.

Process improvement is a long-term activity, so each of the stages in the improve-
ment process may last several months. It is also a continuous activity as, whatever
new processes are introduced, the business environment will change and the new
processes will themselves have to evolve to take these changes into account.

The notion of process maturity was introduced in the late 1980s when the
Software Engineering Institute (SEI) proposed their model of process capability
maturity (Humphrey 1988). The maturity of a software company’s processes reflects
the process management, measurement, and use of good software engineering prac-
tices in the company. This idea was introduced so that the U.S. Department of
Defense could assess the software engineering capability of defense contractors,
with a view to limiting contracts to those contractors who had reached a required
level of process maturity. Five levels of process maturity were proposed. as shown in
Figure 2.12. These have evolved and developed over the last 25 years (Chrissis,
Konrad, and Shrum 2011), but the fundamental ideas in Humphrey’s model are still
the basis of software process maturity assessment.

The levels in the process maturity model are:

1. Initial The goals associated with the process area are satisfied, and for all pro-
cesses the scope of the work to be performed is explicitly set out and communi-
cated to the team members.

2. Managed At this level, the goals associated with the process area are met, and organ-
izational policies are in place that define when each process should be used. There
must be documented project plans that define the project goals. Resource manage-
ment and process monitoring procedures must be in place across the institution.

3. Defined This level focuses on organizational standardization and deployment of
processes. Each project has a managed process that is adapted to the project require-
ments from a defined set of organizational processes. Process assets and process
measurements must be collected and used for future process improvements.
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4.  Quantitatively managed At this level, there is an organizational responsibility to
use statistical and other quantitative methods to control subprocesses. That is, col-
lected process and product measurements must be used in process management.

5. Optimizing At this highest level, the organization must use the process and
product measurements to drive process improvement. Trends must be analyzed
and the processes adapted to changing business needs.

The work on process maturity levels has had a major impact on the software
industry. It focused attention on the software engineering processes and practices
that were used and led to significant improvements in software engineering capabil-
ity. However, there is too much overhead in formal process improvement for small
companies, and maturity estimation with agile processes is difficult. Consequently,
only large software companies now use this maturity-focused approach to software
process improvement.

KEY POINTS

Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.

General process models describe the organization of software processes. Examples of these
general models include the waterfall model, incremental development, and reusable component
configuration and integration.
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Requirements engineering is the process of developing a software specification. Specifications
are intended to communicate the system needs of the customer to the system developers.

Design and implementation processes are concerned with transforming a requirements specifi-
cation into an executable software system.

Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

Software evolution takes place when you change existing software systems to meet new
requirements. Changes are continuous, and the software must evolve to remain useful.

Processes should include activities to cope with change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and design. Processes may be structured for iterative
development and delivery so that changes may be made without disrupting the system as a whole.

Process improvement is the process of improving existing software processes to improve soft-
ware quality, lower development costs, or reduce development time. It is a cyclic process involv-
ing process measurement, analysis, and change.

FURTHER READING

“Process Models in Software Engineering.” This is an excellent overview of a wide range of software
engineering process models that have been proposed. (W. Scacchi, Encyclopaedia of Software
Engineering, ed. ). ). Marciniak, John Wiley & Sons, 2001) http://www.ics.uci.edu/~wscacchi/
Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

Software Process Improvement: Results and Experience from the Field. This book is a collection of
papers focusing on process improvement case studies in several small and medium-sized Norwegian
companies. It also includes a good introduction to the general issues of process improvement.
(Conradi, R., Dyb3, T., Sjgberg, D., and Ulsund, T. (eds.), Springer, 2006).

“Software Development Life Cycle Models and Methodologies.” This blog post is a succinct sum-
mary of several software process models that have been proposed and used. It discusses the advan-
tages and disadvantages of each of these models (M. Sami, 2012). http://melsatar.wordpress.
com/2012/03/15/software-development-life-cycle-models-and-methodologies/

WEBSITE

PowerPoint slides for this chapter:
www.pearsonglobaleditions.com/Sommerville
Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/
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EXERCISES

2.1.

2.2.

2.3.

2.4,

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

Suggest the most appropriate generic software process model that might be used as a basis
for managing the development of the following systems. Explain your answer according to the
type of system being developed:

A system to control antilock braking in a car
A virtual reality system to support software maintenance
A university accounting system that replaces an existing system

An interactive travel planning system that helps users plan journeys with the lowest
environmental impact

Incremental software development could be very effectively used for customers who do not
have a clear idea about the systems needed for their operations. Discuss.

Consider the integration and configuration process model shown in Figure 2.3. Explain why it
is essential to repeat the requirements engineering activity in the process.

Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the requirements engineering process.

Using an example, explain why the design activities of architectural design, database design,
interface design, and component design are interdependent.

Explain why software testing should always be an incremental, staged activity. Are program-
mers the best people to test the programs that they have developed?

Imagine that a government wants a software program that helps to keep track of the utiliza-
tion of the country’s vast mineral resources. Although the requirements put forward by the
government were not very clear, a software company was tasked with the development of a
prototype. The government found the prototype impressive, and asked it be extended to be
the actual system that would be used. Discuss the pros and cons of taking this approach.

You have developed a prototype of a software system and your manager is very impressed by
it. She proposes that it should be put into use as a production system, with new features
added as required. This avoids the expense of system development and makes the system
immediately useful. Write a short report for your manager explaining why prototype systems
should not normally be used as production systems.

Suggest two advantages and two disadvantages of the approach to process assessment and
improvement that is embodied in the SEI’s Capability Maturity framework.

Historically, the introduction of technology has caused profound changes in the labor market
and, temporarily at least, displaced people from jobs. Discuss whether the introduction of
extensive process automation is likely to have the same consequences for software engi-
neers. If you don’t think it will, explain why not. If you think that it will reduce job opportuni-
ties, is it ethical for the engineers affected to passively or actively resist the introduction of
this technology?
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A—gile software
development

Objectives

The objective of this chapter is to introduce you to agile software
development methods. When you have read the chapter, you will:

m understand the rationale for agile software development methods,
the agile manifesto, and the differences between agile and
plan-driven development;

m know about important agile development practices such as user
stories, refactoring, pair programming and test-first development;

m understand the Scrum approach to agile project management;

m understand the issues of scaling agile development methods and
combining agile approaches with plan-driven approaches in the
development of large software systems.

Contents

3.1 Agile methods

3.2 Agile development techniques
3.3 Agile project management
3.4 Scaling agile methods
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Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions and the
emergence of competing products and services. Software is part of almost all busi-
ness operations, so new software has to be developed quickly to take advantage of
new opportunities and to respond to competitive pressure. Rapid software develop-
ment and delivery is therefore the most critical requirement for most business systems.
In fact, businesses may be willing to trade off software quality and compromise on
requirements if they can deploy essential new software quickly.

Because these businesses are operating in a changing environment, it is practi-
cally impossible to derive a complete set of stable software requirements.
Requirements change because customers find it impossible to predict how a system
will affect working practices, how it will interact with other systems, and what user
operations should be automated. It may only be after a system has been delivered
and users gain experience with it that the real requirements become clear. Even then,
external factors drive requirements change.

Plan-driven software development processes that completely specify the require-
ments and then design, build, and test a system are not geared to rapid software devel-
opment. As the requirements change or as requirements problems are discovered, the
system design or implementation has to be reworked and retested. As a consequence,
a conventional waterfall or specification-based process is usually a lengthy one, and
the final software is delivered to the customer long after it was originally specified.

For some types of software, such as safety-critical control systems, where a com-
plete analysis of the system is essential, this plan-driven approach is the right one.
However, in a fast-moving business environment, it can cause real problems. By the
time the software is available for use, the original reason for its procurement may
have changed so radically that the software is effectively useless. Therefore, for
business systems in particular, development processes that focus on rapid software
development and delivery are essential.

The need for rapid software development and processes that can handle changing
requirements has been recognized for many years (Larman and Basili 2003).
However, faster software development really took off in the late 1990s with the
development of the idea of “agile methods” such as Extreme Programming (Beck
1999), Scrum (Schwaber and Beedle 2001), and DSDM (Stapleton 2003).

Rapid software development became known as agile development or agile meth-
ods. These agile methods are designed to produce useful software quickly. All of the
agile methods that have been proposed share a number of common characteristics:

1. The processes of specification, design and implementation are interleaved.
There is no detailed system specification, and design documentation is mini-
mized or generated automatically by the programming environment used to
implement the system. The user requirements document is an outline definition
of the most important characteristics of the system.

2. The system is developed in a series of increments. End-users and other system
stakeholders are involved in specifying and evaluating each increment.
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Figure 3.1 Plan-driven
and agile development
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They may propose changes to the software and new requirements that should be
implemented in a later version of the system.

3. Extensive tool support is used to support the development process. Tools that
may be used include automated testing tools, tools to support configuration man-
agement, and system integration and tools to automate user interface production.

Agile methods are incremental development methods in which the increments are
small, and, typically, new releases of the system are created and made available to
customers every two or three weeks. They involve customers in the development
process to get rapid feedback on changing requirements. They minimize documentation
by using informal communications rather than formal meetings with written documents.

Agile approaches to software development consider design and implementation
to be the central activities in the software process. They incorporate other activities,
such as requirements elicitation and testing, into design and implementation. By
contrast, a plan-driven approach to software engineering identifies separate stages in
the software process with outputs associated with each stage. The outputs from one
stage are used as a basis for planning the following process activity.

Figure 3.1 shows the essential distinctions between plan-driven and agile approaches
to system specification. In a plan-driven software development process, iteration
occurs within activities, with formal documents used to communicate between stages
of the process. For example, the requirements will evolve, and, ultimately, a require-
ments specification will be produced. This is then an input to the design and imple-
mentation process. In an agile approach, iteration occurs across activities. Therefore,
the requirements and the design are developed together rather than separately.

In practice, as I explain in Section 3.4.1, plan-driven processes are often used along
with agile programming practices, and agile methods may incorporate some planned
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activities apart from programming and testing. It is perfectly feasible, in a plan-driven
process, to allocate requirements and plan the design and development phase as a
series of increments. An agile process is not inevitably code-focused, and it may
produce some design documentation. Agile developers may decide that an iteration
should not produce new code but rather should produce system models and documentation.

BB Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to
achieve better software was through careful project planning, formalized quality
assurance, use of analysis and design methods supported by software tools, and con-
trolled and rigorous software development processes. This view came from the soft-
ware engineering community that was responsible for developing large, long-lived
software systems such as aerospace and government systems.

This plan-driven approach was developed for software developed by large teams,
working for different companies. Teams were often geographically dispersed and
worked on the software for long periods of time. An example of this type of software
is the control systems for a modern aircraft, which might take up to 10 years from
initial specification to deployment. Plan-driven approaches involve a significant
overhead in planning, designing, and documenting the system. This overhead is jus-
tified when the work of multiple development teams has to be coordinated, when the
system is a critical system, and when many different people will be involved in
maintaining the software over its lifetime.

However, when this heavyweight, plan-driven development approach is applied
to small and medium-sized business systems, the overhead involved is so large that
it dominates the software development process. More time is spent on how the sys-
tem should be developed than on program development and testing. As the system
requirements change, rework is essential and, in principle at least, the specification
and design have to change with the program.

Dissatisfaction with these heavyweight approaches to software engineering
led to the development of agile methods in the late 1990s. These methods allowed
the development team to focus on the software itself rather than on its design and
documentation. They are best suited to application development where the sys-
tem requirements usually change rapidly during the development process. They
are intended to deliver working software quickly to customers, who can then pro-
pose new and changed requirements to be included in later iterations of the sys-
tem. They aim to cut down on process bureaucracy by avoiding work that has
dubious long-term value and eliminating documentation that will probably never
be used.

The philosophy behind agile methods is reflected in the agile manifesto (http://
agilemanifesto.org) issued by the leading developers of these methods. This mani-
festo states:


http://agilemanifesto.org
http://agilemanifesto.org
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Principle Description

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Embrace change Expect the system requirements to change, and so design the system to
accommodate these changes.

Incremental delivery The software is developed in increments, with the customer specifying the
requirements to be included in each increment.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

People, not process The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working without
prescriptive processes.

Figure 3.2 The . . L .
principles of agile We are uncovering better ways of developing software by doing it and helping

methods others do it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more’.

All agile methods suggest that software should be developed and delivered incre-
mentally. These methods are based on different agile processes but they share a set
of principles, based on the agile manifesto, and so they have much in common. I
have listed these principles in Figure 3.2.

Agile methods have been particularly successful for two kinds of system development.

1. Product development where a software company is developing a small or
medium-sized product for sale. Virtually all software products and apps are now
developed using an agile approach.

2. Custom system development within an organization, where there is a clear com-
mitment from the customer to become involved in the development process and
where there are few external stakeholders and regulations that affect the software.

Agile methods work well in these situations because it is possible to have con-
tinuous communications between the product manager or system customer and the
development team. The software itself is a stand-alone system rather than tightly
integrated with other systems being developed at the same time. Consequently, there
is no need to coordinate parallel development streams. Small and medium-sized

Thttp://agilemanifesto.org/
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Figure 3.3 The XP
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systems can be developed by co-located teams, so informal communications among
team members work well.

YN Agile development techniques

The ideas underlying agile methods were developed around the same time by a number
of different people in the 1990s. However, perhaps the most significant approach to
changing software development culture was the development of Extreme Programming
(XP). The name was coined by Kent Beck (Beck 1998) because the approach was
developed by pushing recognized good practice, such as iterative development, to
“extreme” levels. For example, in XP, several new versions of a system may be devel-
oped by different programmers, integrated, and tested in a day. Figure 3.3 illustrates
the XP process to produce an increment of the system that is being developed.

In XP, requirements are expressed as scenarios (called user stories), which are
implemented directly as a series of tasks. Programmers work in pairs and develop
tests for each task before writing the code. All tests must be successfully executed
when new code is integrated into the system. There is a short time gap between
releases of the system.

Extreme programming was controversial as it introduced a number of agile prac-
tices that were quite different from the development practice of that time. These prac-
tices are summarized in Figure 3.4 and reflect the principles of the agile manifesto:

1. Incremental development is supported through small, frequent releases of the sys-
tem. Requirements are based on simple customer stories or scenarios that are used
as a basis for deciding what functionality should be included in a system increment.

2. Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in
the development and is responsible for defining acceptance tests for the system.

3. People, not process, are supported through pair programming, collective owner-
ship of the system code, and a sustainable development process that does not
involve excessively long working hours.
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Principle or practice Description

Collective ownership The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous As soon as the work on a task is complete, it is integrated into the whole
integration system. After any such integration, all the unit tests in the system must pass.
Incremental planning Requirements are recorded on “story cards,” and the stories to be included in

a release are determined by the time available and their relative priority. The
developers break these stories into development “tasks.” See Figures 3.5
and 3.6.

On-site customer A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

Pair programming Developers work in pairs, checking each other's work and providing the
support to always do a good job.

Refactoring All developers are expected to refactor the code continuously as soon as
potential code improvements are found. This keeps the code simple and
maintainable.

Simple design Enough design is carried out to meet the current requirements and no more.

Small releases The minimal useful set of functionality that provides business value is
developed first. Releases of the system are frequent and incrementally add
functionality to the first release.

Sustainable pace Large amounts of overtime are not considered acceptable, as the net effect is
often to reduce code quality and medium-term productivity.

Test first An automated unit test framework is used to write tests for a new piece of

development functionality before that functionality itself is implemented.

Figure 3.4 Extreme . )
programming practices 4. Change is embraced through regular system releases to customers, test-first

development, refactoring to avoid code degeneration, and continuous integra-
tion of new functionality.

5. Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

In practice, the application of Extreme Programming as originally proposed has
proved to be more difficult than anticipated. It cannot be readily integrated with the
management practices and culture of most businesses. Therefore, companies adopt-
ing agile methods pick and choose those XP practices that are most appropriate for
their way of working. Sometimes these are incorporated into their own development
processes but, more commonly, they are used in conjunction with a management-
focused agile method such as Scrum (Rubin 2013).
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Figure 3.5 A

“prescribing medication”
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3.2.1

Prescribing medication

Kate is a doctor who wishes to prescribe medication for a patient attending a clinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select ‘current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose; If she
wants to change the dose, she enters the new dose then confirms the prescription.

If she chooses ‘new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn't, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either
clicks ‘OK’ or ‘Change’. If she clicks ‘OK, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

I am not convinced that XP on its own is a practical agile method for most com-
panies, but its most significant contribution is probably the set of agile development
practices that it introduced to the community. I discuss the most important of these
practices in this section.

User stories

Software requirements always change. To handle these changes, agile methods do not
have a separate requirements engineering activity. Rather, they integrate requirements
elicitation with development. To make this easier, the idea of “user stories” was devel-
oped where a user story is a scenario of use that might be experienced by a system user.
As far as possible, the system customer works closely with the development team
and discusses these scenarios with other team members. Together, they develop a
“story card” that briefly describes a story that encapsulates the customer needs. The
development team then aims to implement that scenario in a future release of the
software. An example of a story card for the Mentcare system is shown in Figure 3.5.
This is a short description of a scenario for prescribing medication for a patient.
User stories may be used in planning system iterations. Once the story cards have
been developed, the development team breaks these down into tasks (Figure 3.6) and
estimates the effort and resources required for implementing each task. This usually
involves discussions with the customer to refine the requirements. The customer
then prioritizes the stories for implementation, choosing those stories that can be
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Figure 3.6 Examples of
task cards for prescribing L

medication

3.2.2

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

used immediately to deliver useful business support. The intention is to identify
useful functionality that can be implemented in about two weeks, when the next
release of the system is made available to the customer.

Of course, as requirements change, the unimplemented stories change or may be
discarded. If changes are required for a system that has already been delivered, new
story cards are developed and again, the customer decides whether these changes
should have priority over new functionality.

The idea of user stories is a powerful one—people find it much easier to relate to
these stories than to a conventional requirements document or use cases. User stories can
be helpful in getting users involved in suggesting requirements during an initial prede-
velopment requirements elicitation activity. I discuss this in more detail in Chapter 4.

The principal problem with user stories is completeness. It is difficult to judge if
enough user stories have been developed to cover all of the essential requirements
of a system. It is also difficult to judge if a single story gives a true picture of an
activity. Experienced users are often so familiar with their work that they leave
things out when describing it.

Refactoring

A fundamental precept of traditional software engineering is that you should design
for change. That is, you should anticipate future changes to the software and design
it so that these changes can be easily implemented. Extreme programming, however,
has discarded this principle on the basis that designing for change is often wasted
effort. It isn’t worth taking time to add generality to a program to cope with change.
Often the changes anticipated never materialize, or completely different change
requests may actually be made.

Of course, in practice, changes will always have to be made to the code being devel-
oped. To make these changes easier, the developers of XP suggested that the code being
developed should be constantly refactored. Refactoring (Fowler et al. 1999) means that
the programming team look for possible improvements to the software and implements



3.2 Agile development techniques 81

3.2.3

them immediately. When team members see code that can be improved, they make
these improvements even in situations where there is no immediate need for them.

A fundamental problem of incremental development is that local changes tend to
degrade the software structure. Consequently, further changes to the software become
harder and harder to implement. Essentially, the development proceeds by finding
workarounds to problems, with the result that code is often duplicated, parts of the
software are reused in inappropriate ways, and the overall structure degrades as code is
added to the system. Refactoring improves the software structure and readability and
so avoids the structural deterioration that naturally occurs when software is changed.

Examples of refactoring include the reorganization of a class hierarchy to remove
duplicate code, the tidying up and renaming of attributes and methods, and the
replacement of similar code sections, with calls to methods defined in a program
library. Program development environments usually include tools for refactoring.
These simplify the process of finding dependencies between code sections and mak-
ing global code modifications.

In principle, when refactoring is part of the development process, the software
should always be easy to understand and change as new requirements are proposed.
In practice, this is not always the case. Sometimes development pressure means that
refactoring is delayed because the time is devoted to the implementation of new
functionality. Some new features and changes cannot readily be accommodated by
code-level refactoring and require that the architecture of the system be modified.

Test-first development

As I discussed in the introduction to this chapter, one of the important differences
between incremental development and plan-driven development is in the way that
the system is tested. With incremental development, there is no system specification
that can be used by an external testing team to develop system tests. As a conse-
quence, some approaches to incremental development have a very informal testing
process, in comparison with plan-driven testing.

Extreme Programming developed a new approach to program testing to address
the difficulties of testing without a specification. Testing is automated and is central
to the development process, and development cannot proceed until all tests have
been successfully executed. The key features of testing in XP are:

—

test-first development,

2. incremental test development from scenarios,

3. user involvement in the test development and validation, and
4

the use of automated testing frameworks.

XP’s test-first philosophy has now evolved into more general test-driven develop-
ment techniques (Jeffries and Melnik 2007). I believe that test-driven development is
one of the most important innovations in software engineering. Instead of writing code
and then writing tests for that code, you write the tests before you write the code. This
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Figure 3.7 Test case
description for dose
checking

Test 4: Dose checking

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too
high.

2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

means that you can run the test as the code is being written and discover problems dur-
ing development. I discuss test-driven development in more depth in Chapter 8.

Writing tests implicitly defines both an interface and a specification of behavior for
the functionality being developed. Problems of requirements and interface misunder-
standings are reduced. Test-first development requires there to be a clear relationship
between system requirements and the code implementing the corresponding require-
ments. In XP, this relationship is clear because the story cards representing the require-
ments are broken down into tasks and the tasks are the principal unit of implementation.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system. This means that ambi-
guities and omissions in the specification have to be clarified before implementation
begins. Furthermore, it also avoids the problem of “test-lag.” This may happen when
the developer of the system works at a faster pace than the tester. The implementa-
tion gets further and further ahead of the testing and there is a tendency to skip tests,
so that the development schedule can be maintained.

XP’s test-first approach assumes that user stories have been developed, and these
have been broken down into a set of task cards, as shown in Figure 3.6. Each task
generates one or more unit tests that check the implementation described in that task.
Figure 3.7 is a shortened description of a test case that has been developed to check
that the prescribed dose of a drug does not fall outside known safe limits.

The role of the customer in the testing process is to help develop acceptance tests
for the stories that are to be implemented in the next release of the system. As I
explain in Chapter 8, acceptance testing is the process whereby the system is tested
using customer data to check that it meets the customer’s real needs.

Test automation is essential for test-first development. Tests are written as exe-
cutable components before the task is implemented. These testing components
should be stand-alone, should simulate the submission of input to be tested, and
should check that the result meets the output specification. An automated test frame-
work is a system that makes it easy to write executable tests and submit a set of tests
for execution. Junit (Tahchiev et al. 2010) is a widely used example of an automated
testing framework for Java programs.
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3.2.4

As testing is automated, there is always a set of tests that can be quickly and eas-
ily executed. Whenever any functionality is added to the system, the tests can be run
and problems that the new code has introduced can be caught immediately.

Test-first development and automated testing usually result in a large number of
tests being written and executed. However, there are problems in ensuring that test
coverage is complete:

1. Programmers prefer programming to testing, and sometimes they take shortcuts
when writing tests. For example, they may write incomplete tests that do not
check for all possible exceptions that may occur.

2. Some tests can be very difficult to write incrementally. For example, in a com-
plex user interface, it is often difficult to write unit tests for the code that imple-
ments the “display logic”” and workflow between screens.

It is difficult to judge the completeness of a set of tests. Although you may have a lot
of system tests, your test set may not provide complete coverage. Crucial parts of
the system may not be executed and so will remain untested. Therefore, although a
large set of frequently executed tests may give the impression that the system is complete
and correct, this may not be the case. If the tests are not reviewed and further tests are
written after development, then undetected bugs may be delivered in the system release.

Pair programming

Another innovative practice that was introduced in XP is that programmers work in
pairs to develop the software. The programming pair sits at the same computer to
develop the software. However, the same pair do not always program together.
Rather, pairs are created dynamically so that all team members work with each other
during the development process.

Pair programming has a number of advantages.

1. It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming (Weinberg 1971) where
the software is owned by the team as a whole and individuals are not held
responsible for problems with the code. Instead, the team has collective respon-
sibility for resolving these problems.

2. Ttacts as an informal review process because each line of code is looked at by at least
two people. Code inspections and reviews (Chapter 24) are effective in discovering
a high percentage of software errors. However, they are time consuming to organize
and, typically, introduce delays into the development process. Pair programming is a
less formal process that probably doesn’t find as many errors as code inspections.
However, it is cheaper and easier to organize than formal program inspections.

3. Itencourages refactoring to improve the software structure. The problem with ask-
ing programmers to refactor in a normal development environment is that effort
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involved is expended for long-term benefit. An developer who spends time refac-
toring may be judged to be less efficient than one who simply carries on developing
code. Where pair programming and collective ownership are used, others benefit
immediately from the refactoring so they are likely to support the process.

You might think that pair programming would be less efficient than individual
programming. In a given time, a pair of developers would produce half as much code
as two individuals working alone. Many companies that have adopted agile methods
are suspicious of pair programming and do not use it. Other companies mix pair and
individual programming with an experienced programmer working with a less expe-
rienced colleague when they have problems.

Formal studies of the value of pair programming have had mixed results. Using
student volunteers, Williams and her collaborators (Williams et al. 2000) found that
productivity with pair programming seems to be comparable to that of two people
working independently. The reasons suggested are that pairs discuss the software
before development and so probably have fewer false starts and less rework.
Furthermore, the number of errors avoided by the informal inspection is such that
less time is spent repairing bugs discovered during the testing process.

However, studies with more experienced programmers did not replicate these
results (Arisholm et al. 2007). They found that there was a significant loss of produc-
tivity compared with two programmers working alone. There were some quality
benefits, but these did not fully compensate for the pair-programming overhead.
Nevertheless, the sharing of knowledge that happens during pair programming is
very important as it reduces the overall risks to a project when team members leave.
In itself, this may make pair programming worthwhile.

BN Agile project management

In any software business, managers need to know what is going on and whether or not
a project is likely to meet its objectives and deliver the software on time with the pro-
posed budget. Plan-driven approaches to software development evolved to meet this
need. As I discussed in Chapter 23, managers draw up a plan for the project showing
what should be delivered, when it should be delivered, and who will work on the devel-
opment of the project deliverables. A plan-based approach requires a manager to have
a stable view of everything that has to be developed and the development processes.

The informal planning and project control that was proposed by the early adher-
ents of agile methods clashed with this business requirement for visibility. Teams
were self-organizing, did not produce documentation, and planned development in
very short cycles. While this can and does work for small companies developing
software products, it is inappropriate for larger companies who need to know what is
going on in their organization.

Like every other professional software development process, agile development
has to be managed so that the best use is made of the time and resources available to
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Scrum term Definition

Development team A self-organizing group of software developers, which should be no
more than seven people. They are responsible for developing the
software and other essential project documents.

Potentially shippable product The software increment that is delivered from a sprint. The idea is that

increment this should be “potentially shippable,” which means that it is in a
finished state and no further work, such as testing, is needed to
incorporate it into the final product. In practice, this is not always
achievable.

Product backlog This is a list of “to do” items that the Scrum team must tackle. They
may be feature definitions for the software, software requirements, user
stories, or descriptions of supplementary tasks that are needed, such as
architecture definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify
product features or requirements, prioritize these for development, and
continuously review the product backlog to ensure that the project
continues to meet critical business needs. The Product Owner can be a
customer but might also be a product manager in a software company
or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes
work to be done that day. Ideally, this should be a short face-to-face
meeting that includes the whole team.

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is
followed and guides the team in the effective use of Scrum. He or she
is responsible for interfacing with the rest of the company and for
ensuring that the Scrum team is not diverted by outside interference.
The Scrum developers are adamant that the ScrumMaster should not
be thought of as a project manager. Others, however, may not always
find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2 to 4 weeks long.

Velocity An estimate of how much product backlog effort a team can cover in a
single sprint. Understanding a team's velocity helps them estimate what
can be covered in a sprint and provides a basis for measuring
improving performance.

Figure 3.8 Scrum
terminology the team. To address this issue, the Scrum agile method was developed (Schwaber
and Beedle 2001; Rubin 2013) to provide a framework for organizing agile projects
and, to some extent at least, provide external visibility of what is going on. The devel-
opers of Scrum wished to make clear that Scrum was not a method for project man-
agement in the conventional sense, so they deliberately invented new terminology,
such as ScrumMaster, which replaced names such as project manager. Figure 3.8
summarizes Scrum terminology and what it means.
Scrum is an agile method insofar as it follows the principles from the agile mani-
festo, which I showed in Figure 3.2. However, it focuses on providing a framework
for agile project organization, and it does not mandate the use of specific development
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Figure 3.9 The Scrum
sprint cycle
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practices such as pair programming and test-first development. This means that it
can be more easily integrated with existing practice in a company. Consequently, as
agile methods have become a mainstream approach to software development, Scrum
has emerged as the most widely used method.

The Scrum process or sprint cycle is shown in Figure 3.9. The input to the process
is the product backlog. Each process iteration produces a product increment that
could be delivered to customers.

The starting point for the Scrum sprint cycle is the product backlog—the list of
items such as product features, requirements, and engineering improvement that
have to be worked on by the Scrum team. The initial version of the product backlog
may be derived from a requirements document, a list of user stories, or other descrip-
tion of the software to be developed.

While the majority of entries in the product backlog are concerned with the imple-
mentation of system features, other activities may also be included. Sometimes, when
planning an iteration, questions that cannot be easily answered come to light and addi-
tional work is required to explore possible solutions. The team may carry out some pro-
totyping or trial development to understand the problem and solution. There may also be
backlog items to design the system architecture or to develop system documentation.

The product backlog may be specified at varying levels of detail, and it is the
responsibility of the Product Owner to ensure that the level of detail in the specifica-
tion is appropriate for the work to be done. For example, a backlog item could be a
complete user story such as that shown in Figure 3.5, or it could simply be an instruc-
tion such as “Refactor user interface code” that leaves it up to the team to decide on
the refactoring to be done.

Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks.
At the beginning of each cycle, the Product Owner prioritizes the items on the product
backlog to define which are the most important items to be developed in that cycle.
Sprints are never extended to take account of unfinished work. Items are returned to the
product backlog if these cannot be completed within the allocated time for the sprint.

The whole team is then involved in selecting which of the highest priority items
they believe can be completed. They then estimate the time required to complete
these items. To make these estimates, they use the velocity attained in previous
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sprints, that is, how much of the backlog could be covered in a single sprint. This
leads to the creation of a sprint backlog—the work to be done during that sprint. The
team self-organizes to decide who will work on what, and the sprint begins.

During the sprint, the team holds short daily meetings (Scrums) to review pro-
gress and, where necessary, to re-prioritize work. During the Scrum, all team mem-
bers share information, describe their progress since the last meeting, bring up
problems that have arisen, and state what is planned for the following day. Thus,
everyone on the team knows what is going on and, if problems arise, can re-plan
short-term work to cope with them. Everyone participates in this short-term plan-
ning; there is no top-down direction from the ScrumMaster.

The daily interactions among Scrum teams may be coordinated using a Scrum
board. This is an office whiteboard that includes information and post-it notes about
the Sprint backlog, work done, unavailability of staff, and so on. This is a shared
resource for the whole team, and anyone can change or move items on the board. It
means that any team member can, at a glance, see what others are doing and what
work remains to be done.

At the end of each sprint, there is a review meeting, which involves the whole
team. This meeting has two purposes. First, it is a means of process improvement.
The team reviews the way they have worked and reflects on how things could have
been done better. Second, it provides input on the product and the product state for
the product backlog review that precedes the next sprint.

While the ScrumMaster is not formally a project manager, in practice ScrumMasters
take this role in many organizations that have a conventional management structure.
They report on progress to senior management and are involved in longer-term plan-
ning and project budgeting. They may be involved in project administration (agreeing
on holidays for staff, liaising with HR, etc.) and hardware and software purchases.

In various Scrum success stories (Schatz and Abdelshafi 2005; Mulder and van
Vliet 2008; Bellouiti 2009), the things that users like about the Scrum method are:

1. The product is broken down into a set of manageable and understandable chunks
that stakeholders can relate to.

2. Unstable requirements do not hold up progress.

3. The whole team has visibility of everything, and consequently team communi-
cation and morale are improved.

4. Customers see on-time delivery of increments and gain feedback on how the
product works. They are not faced with last-minute surprises when a team
announces that software will not be delivered as expected.

5. Trust between customers and developers is established, and a positive culture is
created in which everyone expects the project to succeed.

Scrum, as originally designed, was intended for use with co-located teams where
all team members could get together every day in stand-up meetings. However,
much software development now involves distributed teams, with team members
located in different places around the world. This allows companies to take advantage
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the development team

so that he or she is The Product Owner
_ ] aware of everyday should visit the
Videoconferencing problems. developers and try to

between the product
owner and the
development team

establish a good
relationship with them.
It is essential that they
trust each other.

Distributed Scrum
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Figure 3.10 Distributed of the state of the
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of lower cost staff in other countries, makes access to specialist skills possible, and
allows for 24-hour development, with work going on in different time zones.
Consequently, there have been developments of Scrum for distributed development
environments and multi-team working. Typically, for offshore development, the prod-
uct owner is in a different country from the development team, which may also be
distributed. Figure 3.10 shows the requirements for Distributed Scrum (Deemer 2011).

Scaling agile methods

Agile methods were developed for use by small programming teams that could work
together in the same room and communicate informally. They were originally used
by for the development of small and medium-sized systems and software products.
Small companies, without formal processes or bureaucracy, were enthusiastic initial
adopters of these methods.

Of course, the need for faster delivery of software, which is more suited to cus-
tomer needs, also applies to both larger systems and larger companies. Consequently,
over the past few years, a lot of work has been put into evolving agile methods for
both large software systems and for use in large companies.

Scaling agile methods has closely related facets:

1. Scaling up these methods to handle the development of large systems that are
too big to be developed by a single small team.

2. Scaling out these methods from specialized development teams to more widespread
use in a large company that has many years of software development experience.
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3.4.1

Of course, scaling up and scaling out are closely related. Contracts to develop
large software systems are usually awarded to large organizations, with multiple
teams working on the development project. These large companies have often exper-
imented with agile methods in smaller projects, so they face the problems of scaling
up and scaling out at the same time.

There are many anecdotes about the effectiveness of agile methods, and it has
been suggested that these can lead to orders of magnitude improvements in produc-
tivity and comparable reductions in defects. Ambler (Ambler 2010), an influential
agile method developer, suggests that these productivity improvements are exagger-
ated for large systems and organizations. He suggests that an organization moving to
agile methods can expect to see productivity improvement across the organization of
about 15% over 3 years, with similar reductions in the number of product defects.

Practical problems with agile methods

In some areas, particularly in the development of software products and apps, agile
development has been incredibly successful. It is by far the best approach to use for
this type of system. However, agile methods may not be suitable for other types of
software development, such as embedded systems engineering or the development
of large and complex systems.

For large, long-lifetime systems that are developed by a software company for an
external client, using an agile approach presents a number of problems.

1. The informality of agile development is incompatible with the legal approach to
contract definition that is commonly used in large companies.

2. Agile methods are most appropriate for new software development rather than
for software maintenance. Yet the majority of software costs in large companies
come from maintaining their existing software systems.

3. Agile methods are designed for small co-located teams, yet much software
development now involves worldwide distributed teams.

Contractual issues can be a major problem when agile methods are used. When
the system customer uses an outside organization for system development, a contract
for the software development is drawn up between them. The software requirements
document is usually part of that contract between the customer and the supplier.
Because the interleaved development of requirements and code is fundamental to
agile methods, there is no definitive statement of requirements that can be included
in the contract.

Consequently, agile methods have to rely on contracts in which the customer
pays for the time required for system development rather than the development of a
specific set of requirements. As long as all goes well, this benefits both the customer
and the developer. However, if problems arise, then there may be difficult disputes
over who is to blame and who should pay for the extra time and resources required
to resolve the problems.
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As I explain in Chapter 9, a huge amount of software engineering effort goes into the
maintenance and evolution of existing software systems. Agile practices, such as incre-
mental delivery, design for change, and maintaining simplicity all make sense when soft-
ware is being changed. In fact, you can think of an agile development process as a process
that supports continual change. If agile methods are used for software product develop-
ment, new releases of the product or app simply involve continuing the agile approach.

However, where maintenance involves a custom system that must be changed in
response to new business requirements, there is no clear consensus on the suitability
of agile methods for software maintenance (Bird 2011; Kilner 2012). Three types of
problems can arise:

m lack of product documentation
m keeping customers involved

m development team continuity

Formal documentation is supposed to describe the system and so make it easier
for people changing the system to understand. In practice, however, formal docu-
mentation is rarely updated and so does not accurately reflect the program code. For
this reason, agile methods enthusiasts argue that it is a waste of time to write this
documentation and that the key to implementing maintainable software is to produce
high-quality, readable code. The lack of documentation should not be a problem in
maintaining systems developed using an agile approach.

However, my experience of system maintenance is that the most important docu-
ment is the system requirements document, which tells the software engineer what the
system is supposed to do. Without such knowledge, it is difficult to assess the impact of
proposed system changes. Many agile methods collect requirements informally and
incrementally and do not create a coherent requirements document. The use of agile
methods may therefore make subsequent system maintenance more difficult and expen-
sive. This is a particular problem if development team continuity cannot be maintained.

A key challenge in using an agile approach to maintenance is keeping customers
involved in the process. While a customer may be able to justify the full-time involve-
ment of a representative during system development, this is less likely during mainte-
nance where changes are not continuous. Customer representatives are likely to lose
interest in the system. Therefore, it is likely that alternative mechanisms, such as change
proposals, discussed in Chapter 25, will have to be adapted to fit in with an agile approach.

Another potential problem that may arise is maintaining continuity of the devel-
opment team. Agile methods rely on team members understanding aspects of the
system without having to consult documentation. If an agile development team is
broken up, then this implicit knowledge is lost and it is difficult for new team mem-
bers to build up the same understanding of the system and its components. Many
programmers prefer to work on new development to software maintenance, and so
they are unwilling to continue to work on a software system after the first release has
been delivered. Therefore, even when the intention is to keep the development team
together, people leave if they are assigned maintenance tasks.
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Principle Practice

Customer involvement This depends on having a customer who is willing and able to spend time with
the development team and who can represent all system stakeholders. Often,
customer representatives have other demands on their time and cannot play a
full part in the software development. Where there are external stakeholders,
such as regulators, it is difficult to represent their views to the agile team.

Embrace change Prioritizing changes can be extremely difficult, especially in systems for which
there are many stakeholders. Typically, each stakeholder gives different
priorities to different changes.

Incremental delivery Rapid iterations and short-term planning for development does not always fit
in with the longer-term planning cycles of business planning and marketing.
Marketing managers may need to know product features several months in
advance to prepare an effective marketing campaign.

Maintain simplicity Under pressure from delivery schedules, team members may not have time to
carry out desirable system simplifications.

People, not process Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods and therefore may not interact
well with other team members.

Figure 3.11 Agile
principles and
organizational practice

3.4.2 Agile and plan-driven methods

A fundamental requirement of scaling agile methods is to integrate them with plan-
driven approaches. Small startup companies can work with informal and short-term
planning, but larger companies have to have longer-term plans and budgets for
investment, staffing, and business development. Their software development must
support these plans, so longer-term software planning is essential.

Early adopters of agile methods in the first decade of the 21st century were enthu-
siasts and deeply committed to the agile manifesto. They deliberately rejected the
plan-driven approach to software engineering and were reluctant to change the ini-
tial vision of agile methods in any way. However, as organizations saw the value and
benefits of an agile approach, they adapted these methods to suit their own culture
and ways of working. They had to do this because the principles underlying agile
methods are sometimes difficult to realize in practice (Figure 3.11).

To address these problems, most large “agile” software development projects com-
bine practices from plan-driven and agile approaches. Some are mostly agile, and others
are mostly plan-driven but with some agile practices. To decide on the balance between
a plan-based and an agile approach, you have to answer a range of technical, human and
organizational questions. These relate to the system being developed, the development
team, and the organizations that are developing and procuring the system (Figure 3.12).

Agile methods were developed and refined in projects to develop small to medium-
sized business systems and software products, where the software developer controls
the specification of the system. Other types of system have attributes such as size, com-
plexity, real-time response, and external regulation that mean a “pure” agile approach is
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Figure 3.12 Factors
influencing the choice
of plan-based or agile
development

System Team Organization
Type Lifetime Technology Distribution Contracts Delivery
—
Scale Regulation Competence Culture

unlikely to work. There needs to be some up-front planning, design, and documentation
in the systems engineering process. Some of the key issues are as follows:

1. How large is the system that is being developed? Agile methods are most effective
when the system can be developed with a relatively small co-located team who
can communicate informally. This may not be possible for large systems that
require larger development teams, so a plan-driven approach may have to be used.

2. What type of system is being developed? Systems that require a lot of analysis
before implementation (e.g., real-time system with complex timing require-
ments) usually need a fairly detailed design to carry out this analysis. A plan-
driven approach may be best in those circumstances.

3.  What is the expected system lifetime? Long-lifetime systems may require more
design documentation to communicate the original intentions of the system
developers to the support team. However, supporters of agile methods rightly
argue that documentation is frequently not kept up to date and is not of much
use for long-term system maintenance.

4. Is the system subject to external regulation? If a system has to be approved
by an external regulator (e.g., the Federal Aviation Administration approves
software that is critical to the operation of an aircraft), then you will probably be
required to produce detailed documentation as part of the system safety case.

Agile methods place a great deal of responsibility on the development team to
cooperate and communicate during the development of the system. They rely on indi-
vidual engineering skills and software support for the development process. However,
in reality, not everyone is a highly skilled engineer, people do not communicate effec-
tively, and it is not always possible for teams to work together. Some planning may be
required to make the most effective use of the people available. Key issues are:

1. How good are the designers and programmers in the development team?
It is sometimes argued that agile methods require higher skill levels than plan-
based approaches in which programmers simply translate a detailed design into
code. If you have a team with relatively low skill levels, you may need to use
the best people to develop the design, with others responsible for programming.
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2. How is the development team organized? If the development team is distributed
or if part of the development is being outsourced, then you may need to develop
design documents to communicate across the development teams.

3. What technologies are available to support system development? Agile methods
often rely on good tools to keep track of an evolving design. If you are develop-
ing a system using an IDE that does not have good tools for program visualiza-
tion and analysis, then more design documentation may be required.

Television and films have created a popular vision of software companies as
informal organizations run by young men (mostly) who provide a fashionable work-
ing environment, with a minimum of bureaucracy and organizational procedures.
This is far from the truth. Most software is developed in large companies that have
established their own working practices and procedures. Management in these
companies may be uncomfortable with the lack of documentation and the informal
decision making in agile methods. Key issues are:

1. Isitimportant to have a very detailed specification and design before moving to
implementation, perhaps for contractual reasons? If so, you probably need to
use a plan-driven approach for requirements engineering but may use agile
development practices during system implementation.

2. Isanincremental delivery strategy, where you deliver the software to customers
or other system stakeholders and get rapid feedback from them, realistic? Will
customer representatives be available, and are they willing to participate in the
development team?

3. Are there cultural issues that may affect system development? Traditional engi-
neering organizations have a culture of plan-based development, as this is the
norm in engineering. This usually requires extensive design documentation
rather than the informal knowledge used in agile processes.

In reality, the issue of whether a project can be labeled as plan-driven or agile
is not very important. Ultimately, the primary concern of buyers of a software system
is whether or not they have an executable software system that meets their needs and
does useful things for the individual user or the organization. Software developers
should be pragmatic and should choose those methods that are most effective for the
type of system being developed, whether or not these are labeled agile or plan-driven.

Agile methods for large systems

Agile methods have to evolve to be used for large-scale software development.
The fundamental reason for this is that large-scale software systems are much
more complex and difficult to understand and manage than small-scale systems
or software products. Six principal factors (Figure 3.13) contribute to this
complexity:
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Figure 3.13 Large
project characteristics

Brownfield
System of development Diverse
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Large software system

Prolonged Regulatory
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Large systems are usually systems of systems—collections of separate, com-
municating systems, where separate teams develop each system. Frequently,
these teams are working in different places, sometimes in different time zones.
It is practically impossible for each team to have a view of the whole system.
Consequently, their priorities are usually to complete their part of the system
without regard for wider systems issues.

Large systems are brownfield systems (Hopkins and Jenkins 2008); that is, they
include and interact with a number of existing systems. Many of the system require-
ments are concerned with this interaction and so don’t really lend themselves to
flexibility and incremental development. Political issues can also be significant
here—often the easiest solution to a problem is to change an existing system.
However, this requires negotiation with the managers of that system to convince
them that the changes can be implemented without risk to the system’s operation.

Where several systems are integrated to create a system, a significant fraction of
the development is concerned with system configuration rather than original
code development. This is not necessarily compatible with incremental devel-
opment and frequent system integration.

Large systems and their development processes are often constrained by exter-
nal rules and regulations limiting the way that they can be developed, that
require certain types of system documentation to be produced, and so on.
Customers may have specific compliance requirements that may have to be fol-
lowed, and these may require process documentation to be completed.

Large systems have a long procurement and development time. It is difficult to
maintain coherent teams who know about the system over that period as, inevi-
tably, people move on to other jobs and projects.

Large systems usually have a diverse set of stakeholders with different perspec-
tives and objectives. For example, nurses and administrators may be the end-users
of a medical system, but senior medical staff, hospital managers, and others, are
also stakeholders in the system. It is practically impossible to involve all of
these different stakeholders in the development process.
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Figure 3.14 IBM's
Agility at Scale model
(© 1BM 2010)
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Dean Leffingwell, who has a great deal of experience in scaling agile methods,
has developed the Scaled Agile Framework (Leffingwell 2007, 2011) to support
large-scale, multi-team software development. He reports how this method has been
used successfully in a number of large companies. IBM has also developed a frame-
work for the large-scale use of agile methods called the Agile Scaling Model (ASM).
Figure 3.14, taken from Ambler’s white paper that discusses ASM (Ambler 2010),
shows an overview of this model.

The ASM recognizes that scaling is a staged process where development teams
move from the core agile practices discussed here to what is called Disciplined Agile
Delivery. Essentially, this stage involves adapting these practices to a disciplined
organizational setting and recognizing that teams cannot simply focus on develop-
ment but must also take into account other stages of the software engineering
process, such as requirements and architectural design.

The final scaling stage in ASM is to move to Agility at Scale where the com-
plexity that is inherent in large projects is recognized. This involves taking account
of factors such as distributed development, complex legacy environments, and
regulatory compliance requirements. The practices used for disciplined agile
delivery may have to be modified on a project-by-project basis to take these into
account and, sometimes, additional plan-based practices added to the process.

No single model is appropriate for all large-scale agile products as the type of
product, the customer requirements, and the people available are all different.
However, approaches to scaling agile methods have a number of things in common:
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1. A completely incremental approach to requirements engineering is impossible.
Some early work on initial software requirements is essential. You need this
work to identify the different parts of the system that may be developed by
different teams and, often, to be part of the contract for the system development.
However, these requirements should not normally be specified in detail; details
are best developed incrementally.

2. There cannot be a single product owner or customer representative. Different
people have to be involved for different parts of the system, and they have to
continuously communicate and negotiate throughout the development process.

3. Itis not possible to focus only on the code of the system. You need to do more
up-front design and system documentation. The software architecture has to be
designed, and there has to be documentation produced to describe critical
aspects of the system, such as database schemas and the work breakdown
across teams.

4. Cross-team communication mechanisms have to be designed and used. This
should involve regular phone and videoconferences between team members and
frequent, short electronic meetings where teams update each other on progress.
A range of communication channels such as email, instant messaging, wikis,
and social networking systems should be provided to facilitate communications.

5. Continuous integration, where the whole system is built every time any devel-
oper checks in a change, is practically impossible when several separate
programs have to be integrated to create the system. However, it is essential
to maintain frequent system builds and regular releases of the system.
Configuration management tools that support multi-team software develop-
ment are essential.

Scrum has been adapted for large-scale development. In essence, the Scrum team
model described in Section 3.3 is maintained, but multiple Scrum teams are set up.
The key characteristics of multi-team Scrum are:

1. Role replication Each team has a Product Owner for its work component and
ScrumMaster. There may be a chief Product Owner and ScrumMaster for the
entire project.

2. Product architects Each team chooses a product architect, and these architects
collaborate to design and evolve the overall system architecture.

3. Release alignment The dates of product releases from each team are aligned so
that a demonstrable and complete system is produced.

4.  Scrum of Scrums There is a daily Scrum of Scrums where representatives from
each team meet to discuss progress, identify problems, and plan the work to be
done that day. Individual team Scrums may be staggered in time so that repre-
sentatives from other teams can attend if necessary.
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3.4.4 Agile methods across organizations

Small software companies that develop software products have been among the
most enthusiastic adopters of agile methods. These companies are not constrained by
organizational bureaucracies or process standards, and they can change quickly to
adopt new ideas. Of course, larger companies have also experimented with agile
methods in specific projects, but it is much more difficult for them to “scale out”
these methods across the organization.

It can be difficult to introduce agile methods into large companies for a number of
reasons:

1. Project managers who do not have experience of agile methods may be reluctant
to accept the risk of a new approach, as they do not know how this will affect
their particular projects.

2. Large organizations often have quality procedures and standards that all pro-
jects are expected to follow, and, because of their bureaucratic nature, these are
likely to be incompatible with agile methods. Sometimes, these are supported
by software tools (e.g., requirements management tools), and the use of these
tools is mandated for all projects.

3. Agile methods seem to work best when team members have a relatively high
skill level. However, within large organizations, there are likely to be a wide
range of skills and abilities, and people with lower skill levels may not be effec-
tive team members in agile processes.

4. There may be cultural resistance to agile methods, especially in those organiza-
tions that have a long history of using conventional systems engineering processes.

Change management and testing procedures are examples of company procedures
that may not be compatible with agile methods. Change management is the process of
controlling changes to a system, so that the impact of changes is predictable and costs are
controlled. All changes have to be approved in advance before they are made, and this
conflicts with the notion of refactoring. When refactoring is part of an agile process, any
developer can improve any code without getting external approval. For large systems,
there are also testing standards where a system build is handed over to an external testing
team. This may conflict with test-first approaches used in agile development methods.

Introducing and sustaining the use of agile methods across a large organization is
a process of cultural change. Cultural change takes a long time to implement and
often requires a change of management before it can be accomplished. Companies
wishing to use agile methods need evangelists to promote change. Rather than try-
ing to force agile methods onto unwilling developers, companies have found that the
best way to introduce agile is bit by bit, starting with an enthusiastic group of devel-
opers. A successful agile project can act as a starting point, with the project team
spreading agile practice across the organization. Once the notion of agile is widely
known, explicit actions can then be taken to spread it across the organization.
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KEY POINTS

Agile methods are iterative development methods that focus on reducing process overheads and
documentation and on incremental software delivery. They involve customer representatives
directly in the development process.

The decision on whether to use an agile or a plan-driven approach to development should depend on
the type of software being developed, the capabilities of the development team, and the culture of the
company developing the system. In practice, a mix of agile and plan-based techniques may be used.

Agile development practices include requirements expressed as user stories, pair programming,
refactoring, continuous integration, and test-first development.

Scrum is an agile method that provides a framework for organizing agile projects. It is centered
around a set of sprints, which are fixed time periods when a system increment is developed. Plan-
ning is based on prioritizing a backlog of work and selecting the highest priority tasks for a sprint.

To scale agile methods, some plan-based practices have to be integrated with agile practice.
These include up-front requirements, multiple customer representatives, more documentation,
common tooling across project teams, and the alignment of releases across teams.

FURTHER READING

“Get Ready for Agile Methods, With Care.” A thoughtful critique of agile methods that discusses their
strengths and weaknesses, written by a vastly experienced software engineer. Still very relevant, although
almost 15 years old. (B. Boehm, /IEEE Computer, January 2002) http://dx.doi.org/10.1109/2.976920

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most read-
able. It explains the approach from the perspective of one of its inventors, and his enthusiasm comes
through very clearly in the book. (K. Beck and C. Andres, Addison-Wesley, 2004) Essential Scrum: A
Practical Guide to the Most Popular Agile Process. This is a comprehensive and readable description
of the 2011 development of the Scrum method (K.S. Rubin, Addison-Wesley, 2013).

“Agility at Scale: Economic Governance, Measured Improvement and Disciplined Delivery.” This
paper discusses IBM's approach to scale agile methods, where they have a systematic approach to
integrating plan-based and agile development. It is an excellent and thoughtful discussion of the key
issues in scaling agile (A.W. Brown, S.W. Ambler, and W. Royce, Proc. 35th Int. Conf. on Software
Engineering, 2013) http://dx.doi.org/10.1145/12944.12948

WEBSITE

PowerPoint slides for this chapter:
www.pearsonglobaleditions.com/Sommerville
Links to supporting videos:

http://software-engineering-book.com/videos/agile-methods/
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EXERCISES

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

At the end of their study program, students in a software engineering course are typically
expected to complete a major project. Explain how the agile methodology may be very useful
for the students to use in this case.

Explain how the principles underlying agile methods lead to the accelerated development and
deployment of software.

Extreme programming expresses user requirements as stories, with each story written on a
card. Discuss the advantages and disadvantages of this approach to requirements description.

In test-first development, tests are written before the code. Explain how the test suite may
compromise the quality of the software system being developed.

Suggest four reasons why the productivity rate of programmers working as a pair might be
more than half that of two programmers working individually.

Compare and contrast the Scrum approach to project management with conventional plan-based
approaches as discussed in Chapter 23. Your comparison should be based on the effectiveness
of each approach for planning the allocation of people to projects, estimating the cost of
projects, maintaining team cohesion, and managing changes in project team membership.

To reduce costs and the environmental impact of commuting, your company decides to close a
number of offices and to provide support for staff to work from home. However, the senior
management who introduce the policy are unaware that software is developed using Scrum.
Explain how you could use technology to support Scrum in a distributed environment to make
this possible. What problems are you likely to encounter using this approach?

Why is it necessary to introduce some methods and documentation from plan-based
approaches when scaling agile methods to larger projects that are developed by distributed
development teams?

Explain why agile methods may not work well in organizations that have teams with a wide
range of skills and abilities and well-established processes.

One of the problems of having a user closely involved with a software development team is
that they “go native.” That is, they adopt the outlook of the development team and lose sight
of the needs of their user colleagues. Suggest three ways how you might avoid this problem,
and discuss the advantages and disadvantages of each approach.
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4

Requirements
engineering

Objectives

The objective of this chapter is to introduce software requirements and to
explain the processes involved in discovering and documenting these
requirements. When you have read the chapter, you will:

m understand the concepts of user and system requirements and why
these requirements should be written in different ways;

m understand the differences between functional and non-functional
. AN '. vl \ software requirements;
VYo V'“ S &4 m understand the main requirements engineering activities of elicitation,
analysis, and validation, and the relationships between these
activities;

m understand why requirements management is necessary and how it
supports other requirements engineering activities.

Contents

4.1 Functional and non-functional requirements
4.2 Requirements engineering processes

4.3 Requirements elicitation

4.4 Requirements specification

4.5 Requirements validation

4.6 Requirements change
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The requirements for a system are the descriptions of the services that a system should
provide and the constraints on its operation. These requirements reflect the needs of
customers for a system that serves a certain purpose such as controlling a device, placing
an order, or finding information. The process of finding out, analyzing, documenting
and checking these services and constraints is called requirements engineering (RE).

The term requirement is not used consistently in the software industry. In some
cases, a requirement is simply a high-level, abstract statement of a service that a
system should provide or a constraint on a system. At the other extreme, it is a
detailed, formal definition of a system function. Davis (Davis 1993) explains why
these differences exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid
for the contract, offering, perhaps, different ways of meeting the client organi-
zation’s needs. Once a contract has been awarded, the contractor must write a
system definition for the client in more detail so that the client understands
and can validate what the software will do. Both of these documents may be
called the requirements document for the system’.

Some of the problems that arise during the requirements engineering process are
aresult of failing to make a clear separation between these different levels of descrip-
tion. I distinguish between them by using the term user requirements to mean the
high-level abstract requirements and system requirements to mean the detailed
description of what the system should do. User requirements and system require-
ments may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what ser-
vices the system is expected to provide to system users and the constraints under
which it must operate. The user requirements may vary from broad statements of the
system features required to detailed, precise descriptions of the system functionality.

2. System requirements are more detailed descriptions of the software system’s
functions, services, and operational constraints. The system requirements docu-
ment (sometimes called a functional specification) should define exactly what is
to be implemented. It may be part of the contract between the system buyer and
the software developers.

Different kinds of requirement are needed to communicate information about a
system to different types of reader. Figure 4.1 illustrates the distinction between user
and system requirements. This example from the mental health care patient informa-
tion system (Mentcare) shows how a user requirement may be expanded into several
system requirements. You can see from Figure 4.1 that the user requirement is quite

Davis, A. M. 1993. Software Requirements: Objects, Functions and States. Englewood Cliffs, NJ:
Prentice-Hall.
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Figure 4.1 User and
system requirements

Figure 4.2 Readers of
different types of
requirements
specification

User requirements definition

1. The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc.)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

general. The system requirements provide more specific information about the ser-
vices and functions of the system that is to be implemented.

You need to write requirements at different levels of detail because different
types of readers use them in different ways. Figure 4.2 shows the types of readers of
the user and system requirements. The readers of the user requirements are not usu-
ally concerned with how the system will be implemented and may be managers who
are not interested in the detailed facilities of the system. The readers of the system
requirements need to know more precisely what the system will do because they are
concerned with how it will support the business processes or because they are
involved in the system implementation.

The different types of document readers shown in Figure 4.2 are examples of
system stakeholders. As well as users, many other people have some kind of interest
in the system. System stakeholders include anyone who is affected by the system in
some way and so anyone who has a legitimate interest in it. Stakeholders range from
end-users of a system through managers to external stakeholders such as regulators,

Client managers
System end-users
Client engineers
Contractor managers
System architects

User
requirements

Y

System end-users
System Client engineers

requirements System architects

Software developers

Y
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@ Feasibility studies

A feasibility study is a short, focused study that should take place early in the RE process. It should answer three
key questions: (1) Does the system contribute to the overall objectives of the organization? (2) Can the system
be implemented within schedule and budget using current technology? and (3) Can the system be integrated
with other systems that are used?

If the answer to any of these questions is no, you should probably not go ahead with the project.

http://software-engineering-book.com/web/feasibility-study/

who certify the acceptability of the system. For example, system stakeholders for the
Mentcare system include:

1. Patients whose information is recorded in the system and relatives of these patients.
2. Doctors who are responsible for assessing and treating patients.

3. Nurses who coordinate the consultations with doctors and administer some
treatments.

4. Medical receptionists who manage patients’ appointments.
5. IT staff who are responsible for installing and maintaining the system.

6. A medical ethics manager who must ensure that the system meets current ethi-
cal guidelines for patient care.

7. Health care managers who obtain management information from the system.

8. Medical records staff who are responsible for ensuring that system information
can be maintained and preserved, and that record keeping procedures have been
properly implemented.

Requirements engineering is usually presented as the first stage of the software
engineering process. However, some understanding of the system requirements may
have to be developed before a decision is made to go ahead with the procurement or
development of a system. This early-stage RE establishes a high-level view of what
the system might do and the benefits that it might provide. These may then be con-
sidered in a feasibility study, which tries to assess whether or not the system is tech-
nically and financially feasible. The results of that study help management decide
whether or not to go ahead with the procurement or development of the system.

In this chapter, I present a “traditional” view of requirements rather than require-
ments in agile processes, which I discussed in Chapter 3. For the majority of large
systems, it is still the case that there is a clearly identifiable requirements engineering
phase before implementation of the system begins. The outcome is a requirements
document, which may be part of the system development contract. Of course, subsequent
changes are made to the requirements, and user requirements may be expanded into


http://software-engineering-book.com/web/feasibility-study
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more detailed system requirements. Sometimes an agile approach of concurrently
eliciting the requirements as the system is developed may be used to add detail and
to refine the user requirements.

Functional and non-functional requirements

4.1.1

Software system requirements are often classified as functional or non-functional
requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs, and how the system
should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions
offered by the system. They include timing constraints, constraints on the devel-
opment process, and constraints imposed by standards. Non-functional require-
ments often apply to the system as a whole rather than individual system features
or services.

In reality, the distinction between different types of requirements is not as clear-
cut as these simple definitions suggest. A user requirement concerned with security,
such as a statement limiting access to authorized users, may appear to be a non-
functional requirement. However, when developed in more detail, this requirement
may generate other requirements that are clearly functional, such as the need to
include user authentication facilities in the system.

This shows that requirements are not independent and that one requirement often
generates or constrains other requirements. The system requirements therefore do not
just specify the services or the features of the system that are required; they also specify
the necessary functionality to ensure that these services/features are delivered effectively.

Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users of the
software, and the general approach taken by the organization when writing requirements.
When expressed as user requirements, functional requirements should be written in natu-
ral language so that system users and managers can understand them. Functional system
requirements expand the user requirements and are written for system developers. They
should describe the system functions, their inputs and outputs, and exceptions in detail.
Functional system requirements vary from general requirements covering what
the system should do to very specific requirements reflecting local ways of working
or an organization’s existing systems. For example, here are examples of functional
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@ Domain requirements

Domain requirements are derived from the application domain of the system rather than from the specific
needs of system users. They may be new functional requirements in their own right, constrain existing func-
tional requirements, or set out how particular computations must be carried out.

The problem with domain requirements is that software engineers may not understand the characteristics of
the domain in which the system operates. This means that these engineers may not know whether or not a
domain requirement has been missed out or conflicts with other requirements.

http://software-engineering-book.com/web/domain-requirements/

requirements for the Mentcare system, used to maintain information about patients
receiving treatment for mental health problems:

1. A user shall be able to search the appointments lists for all clinics.

2. The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.

3. Each staff member using the system shall be uniquely identified by his or her
eight-digit employee number.

These user requirements define specific functionality that should be included in
the system. The requirements show that functional requirements may be written at
different levels of detail (contrast requirements 1 and 3).

Functional requirements, as the name suggests, have traditionally focused on
what the system should do. However, if an organization decides that an existing off-
the-shelf system software product can meet its needs, then there is very little point in
developing a detailed functional specification. In such cases, the focus should be on
the development of information requirements that specify the information needed
for people to do their work. Information requirements specify the information needed
and how it is to be delivered and organized. Therefore, an information requirement
for the Mentcare system might specify what information is to be included in the list
of patients expected for appointments that day.

Imprecision in the requirements specification can lead to disputes between custom-
ers and software developers. It is natural for a system developer to interpret an ambig-
uous requirement in a way that simplifies its implementation. Often, however, this is
not what the customer wants. New requirements have to be established and changes
made to the system. Of course, this delays system delivery and increases costs.

For example, the first Mentcare system requirement in the above list states that a
user shall be able to search the appointments lists for all clinics. The rationale for this
requirement is that patients with mental health problems are sometimes confused.
They may have an appointment at one clinic but actually go to a different clinic. If they
have an appointment, they will be recorded as having attended, regardless of the clinic.
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4.1.2

A medical staff member specifying a search requirement may expect “search” to
mean that, given a patient name, the system looks for that name in all appointments at all
clinics. However, this is not explicit in the requirement. System developers may interpret
the requirement so that it is easier to implement. Their search function may require the
user to choose a clinic and then carry out the search of the patients who attended that
clinic. This involves more user input and so takes longer to complete the search.

Ideally, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services and information
required by the user should be defined. Consistency means that requirements should
not be contradictory.

In practice, it is only possible to achieve requirements consistency and complete-
ness for very small software systems. One reason is that it is easy to make mistakes
and omissions when writing specifications for large, complex systems. Another rea-
son is that large systems have many stakeholders, with different backgrounds and
expectations. Stakeholders are likely to have different—and often inconsistent—
needs. These inconsistencies may not be obvious when the requirements are origi-
nally specified, and the inconsistent requirements may only be discovered after
deeper analysis or during system development.

Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific services delivered by the system to its users.
These non-functional requirements usually specify or constrain characteristics of the
system as a whole. They may relate to emergent system properties such as reliability,
response time, and memory use. Alternatively, they may define constraints on the
system implementation, such as the capabilities of I/O devices or the data represen-
tations used in interfaces with other systems.

Non-functional requirements are often more critical than individual functional
requirements. System users can usually find ways to work around a system function
that doesn’t really meet their needs. However, failing to meet a non-functional
requirement can mean that the whole system is unusable. For example, if an aircraft
system does not meet its reliability requirements, it will not be certified as safe for
operation; if an embedded control system fails to meet its performance requirements,
the control functions will not operate correctly.

While it is often possible to identify which system components implement spe-
cific functional requirements (e.g., there may be formatting components that imple-
ment reporting requirements), this is often more difficult with non-functional
requirements. The implementation of these requirements may be spread throughout
the system, for two reasons:

1. Non-functional requirements may affect the overall architecture of a system
rather than the individual components. For example, to ensure that performance
requirements are met in an embedded system, you may have to organize the
system to minimize communications between components.
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An individual non-functional requirement, such as a security requirement, may
generate several, related functional requirements that define new system ser-
vices that are required if the non-functional requirement is to be implemented.
In addition, it may also generate requirements that constrain existing require-
ments; for example, it may limit access to information in the system.

Nonfunctional requirements arise through user needs because of budget con-

straints, organizational policies, the need for interoperability with other software or
hardware systems, or external factors such as safety regulations or privacy legisla-
tion. Figure 4.3 is a classification of non-functional requirements. You can see from
this diagram that the non-functional requirements may come from required charac-
teristics of the software (product requirements), the organization developing the
software (organizational requirements), or external sources:

Product requirements These requirements specify or constrain the runtime
behavior of the software. Examples include performance requirements for how
fast the system must execute and how much memory it requires; reliability
requirements that set out the acceptable failure rate; security requirements; and
usability requirements.

Organizational requirements These requirements are broad system require-
ments derived from policies and procedures in the customer’s and developer’s
organizations. Examples include operational process requirements that define
how the system will be used; development process requirements that specify the
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PRODUCT REQUIREMENT
The Mentcare system shall be available to all clinics during normal working hours (Mon-Fri, 08:30-17:30).
Downtime within normal working hours shall not exceed 5 seconds in any one day.

ORGANIZATIONAL REQUIREMENT
Users of the Mentcare system shall identify themselves using their health authority identity card.

EXTERNAL REQUIREMENT
The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

Figure 4.4 Examples of
possible non-functional
requirements for the
Mentcare system

programming language; the development environment or process standards to
be used; and environmental requirements that specify the operating environ-
ment of the system.

3. External requirements This broad heading covers all requirements that are
derived from factors external to the system and its development process. These
may include regulatory requirements that set out what must be done for the sys-
tem to be approved for use by a regulator, such as a nuclear safety authority;
legislative requirements that must be followed to ensure that the system oper-
ates within the law; and ethical requirements that ensure that the system will be
acceptable to its users and the general public.

Figure 4.4 shows examples of product, organizational, and external requirements
that could be included in the Mentcare system specification. The product require-
ment is an availability requirement that defines when the system has to be available
and the allowed downtime each day. It says nothing about the functionality of the
Mentcare system and clearly identifies a constraint that has to be considered by
the system designers.

The organizational requirement specifies how users authenticate themselves to
the system. The health authority that operates the system is moving to a standard
authentication procedure for all software where, instead of users having a login
name, they swipe their identity card through a reader to identify themselves. The
external requirement is derived from the need for the system to conform to privacy
legislation. Privacy is obviously a very important issue in health care systems, and
the requirement specifies that the system should be developed in accordance with a
national privacy standard.

A common problem with non-functional requirements is that stakeholders pro-
pose requirements as general goals, such as ease of use, the ability of the system to
recover from failure, or rapid user response. Goals set out good intentions but cause
problems for system developers as they leave scope for interpretation and subse-
quent dispute once the system is delivered. For example, the following system goal
is typical of how a manager might express usability requirements:

The system should be easy to use by medical staff and should be organized in
such a way that user errors are minimized.
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Figure 4.5 Metrics for

specifying non-

functional requirements [ have rewritten this to show how the goal could be expressed as a “testable” non-

functional requirement. It is impossible to objectively verify the system goal, but in
the following description you can at least include software instrumentation to count
the errors made by users when they are testing the system.

Medical staff shall be able to use all the system functions after two hours of
training. After this training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 4.5 shows metrics that you can use to
specify non-functional system properties. You can measure these characteristics
when the system is being tested to check whether or not the system has met its non-
functional requirements.

In practice, customers for a system often find it difficult to translate their goals into
measurable requirements. For some goals, such as maintainability, there are no sim-
ple metrics that can be used. In other cases, even when quantitative specification is
possible, customers may not be able to relate their needs to these specifications. They
don’t understand what some number defining the reliability (for example) means in
terms of their everyday experience with computer systems. Furthermore, the cost of
objectively verifying measurable, non-functional requirements can be very high, and
the customers paying for the system may not think these costs are justified.

Non-functional requirements often conflict and interact with other functional or
non-functional requirements. For example, the identification requirement in
Figure 4.4 requires a card reader to be installed with each computer that connects to
the system. However, there may be another requirement that requests mobile access
to the system from doctors’ or nurses’ tablets or smartphones. These are not normally
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equipped with card readers so, in these circumstances, some alternative identifica-
tion method may have to be supported.

It is difficult to separate functional and non-functional requirements in the
requirements document. If the non-functional requirements are stated separately
from the functional requirements, the relationships between them may be hard to
understand. However, you should, ideally, highlight requirements that are clearly
related to emergent system properties, such as performance or reliability. You can do
this by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.

Non-functional requirements such as reliability, safety, and confidentiality
requirements are particularly important for critical systems. I cover these dependa-
bility requirements in Part 2, which describes ways of specifying reliability, safety,
and security requirements.

Requirements engineering processes

As I discussed in Chapter 2, requirements engineering involves three key activities.
These are discovering requirements by interacting with stakeholders (elicitation and
analysis); converting these requirements into a standard form (specification); and
checking that the requirements actually define the system that the customer wants
(validation). I have shown these as sequential processes in Figure 2.4. However,
in practice, requirements engineering is an iterative process in which the activities
are interleaved.

Figure 4.6 shows this interleaving. The activities are organized as an iterative
process around a spiral. The output of the RE process is a system requirements docu-
ment. The amount of time and effort devoted to each activity in an iteration depends
on the stage of the overall process, the type of system being developed, and the
budget that is available.

Early in the process, most effort will be spent on understanding high-level business
and non-functional requirements, and the user requirements for the system. Later in the
process, in the outer rings of the spiral, more effort will be devoted to eliciting and
understanding the non-functional requirements and more detailed system requirements.

This spiral model accommodates approaches to development where the require-
ments are developed to different levels of detail. The number of iterations around the
spiral can vary so that the spiral can be exited after some or all of the user require-
ments have been elicited. Agile development can be used instead of prototyping so
that the requirements and the system implementation are developed together.

In virtually all systems, requirements change. The people involved develop a bet-
ter understanding of what they want the software to do; the organization buying the
system changes; and modifications are made to the system’s hardware, software, and
organizational environment. Changes have to be managed to understand the impact
on other requirements and the cost and system implications of making the change.
I discuss this process of requirements management in Section 4.6.
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Requirements elicitation

The aims of the requirements elicitation process are to understand the work that
stakeholders do and how they might use a new system to help support that work.
During requirements elicitation, software engineers work with stakeholders to find
out about the application domain, work activities, the services and system features
that stakeholders want, the required performance of the system, hardware con-

straints, and so on.

Eliciting and understanding requirements from system stakeholders is a difficult

process for several reasons:

1. Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they want
the system to do; they may make unrealistic demands because they don’t know

what is and isn’t feasible.

Requirements
validation
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Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Requirements engineers, without
experience in the customer’s domain, may not understand these requirements.

Different stakeholders, with diverse requirements, may express their require-
ments in different ways. Requirements engineers have to discover all potential
sources of requirements and discover commonalities and conflict.

Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to increase
their influence in the organization.

The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from new
stakeholders who were not originally consulted.

A process model of the elicitation and analysis process is shown in Figure 4.7.

Each organization will have its own version or instantiation of this general model,
depending on local factors such as the expertise of the staff, the type of system being
developed, and the standards used.

The process activities are:

Requirements discovery and understanding This is the process of interacting with
stakeholders of the system to discover their requirements. Domain requirements
from stakeholders and documentation are also discovered during this activity.

Requirements classification and organization This activity takes the unstruc-
tured collection of requirements, groups related requirements and organizes
them into coherent clusters.

Requirements prioritization and negotiation Inevitably, when multiple stake-
holders are involved, requirements will conflict. This activity is concerned with
prioritizing requirements and finding and resolving requirements conflicts
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4.3.1

@ Viewpoints

A viewpoint is a way of collecting and organizing a set of requirements from a group of stakeholders who have
something in common. Each viewpoint therefore includes a set of system requirements. Viewpoints might come
from end-users, managers, or others. They help identify the people who can provide information about their
requirements and structure the requirements for analysis.

http://www.software-engineering-book.com/web/viewpoints/

through negotiation. Usually, stakeholders have to meet to resolve differences
and agree on compromise requirements.

4.  Requirements documentation The requirements are documented and input into
the next round of the spiral. An early draft of the software requirements docu-
ments may be produced at this stage, or the requirements may simply be main-
tained informally on whiteboards, wikis, or other shared spaces.

Figure 4.7 shows that requirements elicitation and analysis is an iterative process
with continual feedback from each activity to other activities. The process cycle
starts with requirements discovery and ends with the requirements documentation.
The analyst’s understanding of the requirements improves with each round of the
cycle. The cycle ends when the requirements document has been produced.

To simplify the analysis of requirements, it is helpful to organize and group the
stakeholder information. One way of doing so is to consider each stakeholder group
to be a viewpoint and to collect all requirements from that group into the viewpoint.
You may also include viewpoints to represent domain requirements and constraints
from other systems. Alternatively, you can use a model of the system architecture to
identify subsystems and to associate requirements with each subsystem.

Inevitably, different stakeholders have different views on the importance and pri-
ority of requirements, and sometimes these views are conflicting. If some stakehold-
ers feel that their views have not been properly considered, then they may deliberately
attempt to undermine the RE process. Therefore, it is important that you organize
regular stakeholder meetings. Stakeholders should have the opportunity to express
their concerns and agree on requirements compromises.

At the requirements documentation stage, it is important that you use simple lan-
guage and diagrams to describe the requirements. This makes it possible for stake-
holders to understand and comment on these requirements. To make information
sharing easier, it is best to use a shared document (e.g., on Google Docs or Office 365)
or a wiki that is accessible to all interested stakeholders.

Requirements elicitation techniques

Requirements elicitation involves meeting with stakeholders of different kinds to
discover information about the proposed system. You may supplement this information
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with knowledge of existing systems and their usage and information from docu-
ments of various kinds. You need to spend time understanding how people work,
what they produce, how they use other systems, and how they may need to change to
accommodate a new system.

There are two fundamental approaches to requirements elicitation:

1. Interviewing, where you talk to people about what they do.

2. Observation or ethnography, where you watch people doing their job to see
what artifacts they use, how they use them, and so on.

You should use a mix of interviewing and observation to collect information and,
from that, you derive the requirements, which are then the basis for further discussions.

4.3.1.1 Interviewing

Formal or informal interviews with system stakeholders are part of most require-
ments engineering processes. In these interviews, the requirements engineering team
puts questions to stakeholders about the system that they currently use and the sys-
tem to be developed. Requirements are derived from the answers to these questions.
Interviews may be of two types:

1. Closed interviews, where the stakeholder answers a predefined set of questions.

2. Open interviews, in which there is no predefined agenda. The requirements
engineering team explores a range of issues with system stakeholders and hence
develops a better understanding of their needs.

In practice, interviews with stakeholders are normally a mixture of both of these.
You may have to obtain the answer to certain questions, but these usually lead to
other issues that are discussed in a less structured way. Completely open-ended dis-
cussions rarely work well. You usually have to ask some questions to get started and
to keep the interview focused on the system to be developed.

Interviews are good for getting an overall understanding of what stakeholders do,
how they might interact with the new system, and the difficulties that they face with
current systems. People like talking about their work, and so they are usually happy
to get involved in interviews. However, unless you have a system prototype to dem-
onstrate, you should not expect stakeholders to suggest specific and detailed require-
ments. Everyone finds it difficult to visualize what a system might be like. You need
to analyze the information collected and to generate the requirements from this.

Eliciting domain knowledge through interviews can be difficult, for two reasons:

1. All application specialists use jargon specific to their area of work. It is impos-
sible for them to discuss domain requirements without using this terminology.
They normally use words in a precise and subtle way that requirements engi-
neers may misunderstand.
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2. Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth mention-
ing. For example, for a librarian, it goes without saying that all acquisitions are
catalogued before they are added to the library. However, this may not be obvi-
ous to the interviewer, and so it isn’t taken into account in the requirements.

Interviews are not an effective technique for eliciting knowledge about organiza-
tional requirements and constraints because there are subtle power relationships
between the different people in the organization. Published organizational structures
rarely match the reality of decision making in an organization, but interviewees may
not wish to reveal the actual rather than the theoretical structure to a stranger. In
general, most people are generally reluctant to discuss political and organizational
issues that may affect the requirements.

To be an effective interviewer, you should bear two things in mind:

1. You should be open-minded, avoid preconceived ideas about the requirements,
and willing to listen to stakeholders. If the stakeholder comes up with surprising
requirements, then you should be willing to change your mind about the system.

2. You should prompt the interviewee to get discussions going by using a spring-
board question or a requirements proposal, or by working together on a proto-
type system. Saying to people “tell me what you want” is unlikely to result in
useful information. They find it much easier to talk in a defined context rather
than in general terms.

Information from interviews is used along with other information about the sys-
tem from documentation describing business processes or existing systems, user
observations, and developer experience. Sometimes, apart from the information in
the system documents, the interview information may be the only source of informa-
tion about the system requirements. However, interviewing on its own is liable to
miss essential information, and so it should be used in conjunction with other
requirements elicitation techniques.

4.3.1.2 Ethnography

Software systems do not exist in isolation. They are used in a social and organiza-
tional environment, and software system requirements may be generated or con-
strained by that environment. One reason why many software systems are delivered
but never used is that their requirements do not take proper account of how social
and organizational factors affect the practical operation of the system. It is therefore
very important that, during the requirements engineering process, you try to under-
stand the social and organizational issues that affect the use of the system.
Ethnography is an observational technique that can be used to understand opera-
tional processes and help derive requirements for software to support these pro-
cesses. An analyst immerses himself or herself in the working environment where
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the system will be used. The day-to-day work is observed, and notes are made of the
actual tasks in which participants are involved. The value of ethnography is that it
helps discover implicit system requirements that reflect the actual ways that people
work, rather than the formal processes defined by the organization.

People often find it very difficult to articulate details of their work because it is
second nature to them. They understand their own work but may not understand its
relationship to other work in the organization. Social and organizational factors that
affect the work, but that are not obvious to individuals, may only become clear when
noticed by an unbiased observer. For example, a workgroup may self-organize so
that members know of each other’s work and can cover for each other if someone is
absent. This may not be mentioned during an interview as the group might not see it
as an integral part of their work.

Suchman (Suchman 1983) pioneered the use of ethnography to study office work.
She found that actual work practices were far richer, more complex, and more
dynamic than the simple models assumed by office automation systems. The differ-
ence between the assumed and the actual work was the most important reason why
these office systems had no significant effect on productivity. Crabtree (Crabtree
2003) discusses a wide range of studies since then and describes, in general, the use
of ethnography in systems design. In my own research, I have investigated methods
of integrating ethnography into the software engineering process by linking it with
requirements engineering methods (Viller and Sommerville 2000) and documenting
patterns of interaction in cooperative systems (Martin and Sommerville 2004).

Ethnography is particularly effective for discovering two types of requirements:

1. Requirements derived from the way in which people actually work, rather than
the way in which business process definitions say they ought to work. In prac-
tice, people never follow formal processes. For example, air traffic controllers
may switch off a conflict alert system that detects aircraft with intersecting
flight paths, even though normal control procedures specify that it should be
used. The conflict alert system is sensitive and issues audible warnings even
when planes are far apart. Controllers may find these distracting and prefer to
use other strategies to ensure that planes are not on conflicting flight paths.

2. Requirements derived from cooperation and awareness of other people’s activi-
ties. For example, air traffic controllers (ATCs) may use an awareness of other
controlles’ work to predict the number of aircraft that will be entering their con-
trol sector. They then modify their control strategies depending on that pre-
dicted workload. Therefore, an automated ATC system should allow controllers
in a sector to have some visibility of the work in adjacent sectors.

Ethnography can be combined with the development of a system prototype
(Figure 4.8). The ethnography informs the development of the prototype so that
fewer prototype refinement cycles are required. Furthermore, the prototyping
focuses the ethnography by identifying problems and questions that can then be dis-
cussed with the ethnographer. He or she should then look for the answers to these
questions during the next phase of the system study (Sommerville et al. 1993).
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Ethnography is helpful to understand existing systems, but this understanding
does not always help with innovation. Innovation is particularly relevant for new
product development. Commentators have suggested that Nokia used ethnography
to discover how people used their phones and developed new phone models on that
basis; Apple, on the other hand, ignored current use and revolutionized the mobile
phone industry with the introduction of the iPhone.

Ethnographic studies can reveal critical process details that are often missed by
other requirements elicitation techniques. However, because of its focus on the end-
user, this approach is not effective for discovering broader organizational or domain
requirements or for suggestion innovations. You therefore have to use ethnography
as one of a number of techniques for requirements elicitation.
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Stories and scenarios

People find it easier to relate to real-life examples than abstract descriptions. They
are not good at telling you the system requirements. However, they may be able to
describe how they handle particular situations or imagine things that they might do
in a new way of working. Stories and scenarios are ways of capturing this kind of
information. You can then use these when interviewing groups of stakeholders to
discuss the system with other stakeholders and to develop more specific system
requirements.

Stories and scenarios are essentially the same thing. They are a description of how
the system can be used for some particular task. They describe what people do, what
information they use and produce, and what systems they may use in this process.
The difference is in the ways that descriptions are structured and in the level of detail
presented. Stories are written as narrative text and present a high-level description of
system use; scenarios are usually structured with specific information collected such
as inputs and outputs. I find stories to be effective in setting out the “big picture.”
Parts of stories can then be developed in more detail and represented as scenarios.

Figure 4.9 is an example of a story that I developed to understand the requirements
for the iLearn digital learning environment that I introduced in Chapter 1. This story
describes a situation in a primary (elementary) school where the teacher is using the
environment to support student projects on the fishing industry. You can see this is a
very high-level description. Its purpose is to facilitate discussion of how the iLearn
system might be used and to act as a starting point for eliciting the requirements for
that system.
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Photo sharing in the classroom

Jack is a primary school teacher in Ullapool (a village in northern Scotland). He has decided that a class project
should be focused on the fishing industry in the area, looking at the history, development, and economic impact
of fishing. As part of this project, pupils are asked to gather and share reminiscences from relatives, use newspa-
per archives, and collect old photographs related to fishing and fishing communities in the area. Pupils use an
iLearn wiki to gather together fishing stories and SCRAN (a history resources site) to access newspaper archives
and photographs. However, Jack also needs a photo-sharing site because he wants pupils to take and comment
on each other's photos and to upload scans of old photographs that they may have in their families.

Jack sends an email to a primary school teachers’ group, which he is a member of, to see if anyone can rec-
ommend an appropriate system. Two teachers reply, and both suggest that he use KidsTakePics, a photo-sharing
site that allows teachers to check and moderate content. As KidsTakePics is not integrated with the iLearn
authentication service, he sets up a teacher and a class account. He uses the iLearn setup service to add
KidsTakePics to the services seen by the pupils in his class so that when they log in, they can immediately use
the system to upload photos from their mobile devices and class computers.

Figure 4.9 A user story
for the iLearn system

The advantage of stories is that everyone can easily relate to them. We found this
approach to be particularly useful to get information from a wider community than
we could realistically interview. We made the stories available on a wiki and invited
teachers and students from across the country to comment on them.

These high-level stories do not go into detail about a system, but they can be
developed into more specific scenarios. Scenarios are descriptions of example user
interaction sessions. I think that it is best to present scenarios in a structured way
rather than as narrative text. User stories used in agile methods such as Extreme
Programming, are actually narrative scenarios rather than general stories to help
elicit requirements.

A scenario starts with an outline of the interaction. During the elicitation process,
details are added to create a complete description of that interaction. At its most
general, a scenario may include:

1. A description of what the system and users expect when the scenario starts.
A description of the normal flow of events in the scenario.

A description of what can go wrong and how resulting problems can be handled.

Information about other activities that might be going on at the same time.

M

A description of the system state when the scenario ends.

As an example of a scenario, Figure 4.10 describes what happens when a student
uploads photos to the KidsTakePics system, as explained in Figure 4.9. The key dif-
ference between this system and other systems is that a teacher moderates the
uploaded photos to check that they are suitable for sharing.

You can see this is a much more detailed description than the story in Figure 4.9,
and so it can be used to propose requirements for the iLearn system. Like stories,
scenarios can be used to facilitate discussions with stakeholders who sometimes may
have different ways of achieving the same result.
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Uploading photos to KidsTakePics

Initial assumption: A user or a group of users have one or more digital photographs to be uploaded to the
picture-sharing site. These photos are saved on either a tablet or a laptop computer. They have successfully
logged on to KidsTakePics.

Normal: The user chooses to upload photos and is prompted to select the photos to be uploaded on the
computer and to select the project name under which the photos will be stored. Users should also be given the
option of inputting keywords that should be associated with each uploaded photo. Uploaded photos are named
by creating a conjunction of the user name with the filename of the photo on the local computer.

On completion of the upload, the system automatically sends an email to the project moderator, asking them to
check new content, and generates an on-screen message to the user that this checking has been done.

What can go wrong: No moderator is associated with the selected project. An email is automatically generated to
the school administrator asking them to nominate a project moderator. Users should be informed of a possible
delay in making their photos visible.

Photos with the same name have already been uploaded by the same user. The user should be asked if he or she
wishes to re-upload the photos with the same name, rename the photos, or cancel the upload. If users choose to
re-upload the photos, the originals are overwritten. If they choose to rename the photos, a new name is
automatically generated by adding a number to the existing filename.

Other activities: The moderator may be logged on to the system and may approve photos as they are uploaded.

System state on completion: User is logged on. The selected photos have been uploaded and assigned a status
“awaiting moderation.” Photos are visible to the moderator and to the user who uploaded them.

Figure 4.10 Scenario
for uploading photos
in KidsTakePics

Requirements specification

Requirements specification is the process of writing down the user and system require-
ments in a requirements document. Ideally, the user and system requirements should
be clear, unambiguous, easy to understand, complete, and consistent. In practice, this
is almost impossible to achieve. Stakeholders interpret the requirements in different
ways, and there are often inherent conflicts and inconsistencies in the requirements.

User requirements are almost always written in natural language supplemented
by appropriate diagrams and tables in the requirements document. System require-
ments may also be written in natural language, but other notations based on forms,
graphical, or mathematical system models can also be used. Figure 4.11 summarizes
possible notations for writing system requirements.

The user requirements for a system should describe the functional and nonfunctional
requirements so that they are understandable by system users who don’t have detailed
technical knowledge. Ideally, they should specify only the external behavior of the sys-
tem. The requirements document should not include details of the system architecture
or design. Consequently, if you are writing user requirements, you should not use soft-
ware jargon, structured notations, or formal notations. You should write user require-
ments in natural language, with simple tables, forms, and intuitive diagrams.
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Notation Description

Natural language The requirements are written using numbered sentences in natural language.
sentences Each sentence should express one requirement.

Structured natural The requirements are written in natural language on a standard form or
language template. Each field provides information about an aspect of the requirement.
Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system. UML (unified modeling language) use
case and sequence diagrams are commonly used.

Mathematical These notations are based on mathematical concepts such as finite-state

specifications machines or sets. Although these unambiguous specifications can reduce the
ambiguity in a requirements document, most customers don’t understand a
formal specification. They cannot check that it represents what they want, and
they are reluctant to accept it as a system contract. (I discuss this approach, in
Chapter 10, which covers system dependability.)

Figure 4.11 Notations . . .
for writing system System requirements are expanded versions of the user requirements that soft-

requirements ware engineers use as the starting point for the system design. They add detail and
explain how the system should provide the user requirements. They may be used as
part of the contract for the implementation of the system and should therefore be a
complete and detailed specification of the whole system.

Ideally, the system requirements should only describe the external behavior of the
system and its operational constraints. They should not be concerned with how the
system should be designed or implemented. However, at the level of detail required
to completely specify a complex software system, it is neither possible nor desirable
to exclude all design information. There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure the
requirements specification. The system requirements are organized according to
the different subsystems that make up the system. We did this when we were
defining the requirements for the iLearn system, where we proposed the archi-
tecture shown in Figure 1.8.

2. In most cases, systems must interoperate with existing systems, which constrain
the design and impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements, such as
N-version programming to achieve reliability, discussed in Chapter 11, may be
necessary. An external regulator who needs to certify that the system is safe may
specify that an architectural design that has already been certified should be used.

4.4.1 Natural language specification

Natural language has been used to write requirements for software since the 1950s.
It is expressive, intuitive, and universal. It is also potentially vague and ambiguous,
and its interpretation depends on the background of the reader. As a result, there
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3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes. (Changes in
blood sugar are relatively slow, so more frequent measurement is unnecessary; less frequent measurement
could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the associated
actions defined in Table 1. (A self-test routine can discover hardware and software problems and alert the user
to the fact the normal operation may be impossible.)

Figure 4.12 Example
requirements for the

insulin pump software

system

4.4.2

have been many proposals for alternative ways to write requirements. However,
none of these proposals has been widely adopted, and natural language will continue
to be the most widely used way of specifying system and software requirements.

To minimize misunderstandings when writing natural language requirements, I
recommend that you follow these simple guidelines:

1. Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardizing the format makes omissions less likely and requirements
easier to check. I suggest that, wherever possible, you should write the requirement
in one or two sentences of natural language.

2. Use language consistently to distinguish between mandatory and desirable
requirements. Mandatory requirements are requirements that the system must
support and are usually written using “shall.” Desirable requirements are not
essential and are written using “should.”

3. Use text highlighting (bold, italic, or color) to pick out key parts of the requirement.

4. Do not assume that readers understand technical, software engineering language.
It is easy for words such as “architecture” and “module” to be misunderstood.
Wherever possible, you should avoid the use of jargon, abbreviations, and acronyms.

5. Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been
included and who proposed the requirement (the requirement source), so that
you know whom to consult if the requirement has to be changed. Requirements
rationale is particularly useful when requirements are changed, as it may help
decide what changes would be undesirable.

Figure 4.12 illustrates how these guidelines may be used. It includes two require-
ments for the embedded software for the automated insulin pump, introduced in
Chapter 1. Other requirements for this embedded system are defined in the insulin
pump requirements document, which can be downloaded from the book’s web pages.

Structured specifications

Structured natural language is a way of writing system requirements where require-
ments are written in a standard way rather than as free-form text. This approach
maintains most of the expressiveness and understandability of natural language but
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@ Problems with using natural language for requirements specification

The flexibility of natural language, which is so useful for specification, often causes problems. There is scope for
writing unclear requirements, and readers (the designers) may misinterpret requirements because they have a
different background to the user. It is easy to amalgamate several requirements into a single sentence, and
structuring natural language requirements can be difficult.

http://software-engineering-book.com/web/natural-language/

ensures that some uniformity is imposed on the specification. Structured language
notations use templates to specify system requirements. The specification may use
programming language constructs to show alternatives and iteration, and may high-
light key elements using shading or different fonts.

The Robertsons (Robertson and Robertson 2013), in their book on the VOLERE
requirements engineering method, recommend that user requirements be initially
written on cards, one requirement per card. They suggest a number of fields on each
card, such as the requirements rationale, the dependencies on other requirements, the
source of the requirements, and supporting materials. This is similar to the approach
used in the example of a structured specification shown in Figure 4.13.

To use a structured approach to specifying system requirements, you define one
or more standard templates for requirements and represent these templates as struc-
tured forms. The specification may be structured around the objects manipulated by
the system, the functions performed by the system, or the events processed by the
system. An example of a form-based specification, in this case, one that defines how
to calculate the dose of insulin to be delivered when the blood sugar is within a safe
band, is shown in Figure 4.13.

When a standard format is used for specifying functional requirements, the fol-
lowing information should be included:

1. A description of the function or entity being specified.
A description of its inputs and the origin of these inputs.

2
3. A description of its outputs and the destination of these outputs.
4

Information about the information needed for the computation or other entities
in the system that are required (the “requires” part).

d

A description of the action to be taken.

6. If a functional approach is used, a precondition setting out what must be true
before the function is called, and a postcondition specifying what is true after
the function is called.

7. A description of the side effects (if any) of the operation.

Using structured specifications removes some of the problems of natural language
specification. Variability in the specification is reduced, and requirements are organized
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Insulin Pump/Control Software/SRS/3.3.2

Function
Description

Inputs
Source
Outputs
Destination
Action:

Requires
Precondition
Postcondition
Side effects

Figure 4.13 The

Compute insulin dose: Safe sugar level.

Computes the dose of insulin to be delivered when the current measured sugar level is in the
safe zone between 3 and 7 units.

Current sugar reading (r2), the previous two readings (r0 and r1).
Current sugar reading from sensor. Other readings from memory.
CompDose—the dose in insulin to be delivered.

Main control loop.

CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the current sugar level and the
previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is
set to the minimum dose that can be delivered. (see Figure 4.14)

Two previous readings so that the rate of change of sugar level can be computed.
The insulin reservoir contains at least the maximum allowed single dose of insulin.
r0 is replaced by r1 then r1 is replaced by r2.

None.

structured specification

of a requirement for
an insulin pump

Figure 4.14 The
tabular specification
of computation in an
insulin pump

more effectively. However, it is still sometimes difficult to write requirements in a
clear and unambiguous way, particularly when complex computations (e.g., how to
calculate the insulin dose) are to be specified.

To address this problem, you can add extra information to natural language
requirements, for example, by using tables or graphical models of the system. These
can show how computations proceed, how the system state changes, how users inter-
act with the system, and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative
situations and you need to describe the actions to be taken for each of these. The
insulin pump bases its computations of the insulin requirement on the rate of change
of blood sugar levels. The rates of change are computed using the current and previ-
ous readings. Figure 4.14 is a tabular description of how the rate of change of blood
sugar is used to calculate the amount of insulin to be delivered.

Condition Action

Sugar level falling (r2 <r1) CompDose =0

Sugar level stable (12 =r1) CompDose = 0

Sugar level increasing and rate of increase CompDose = 0

decreasing ((r2 — r1)<(r1 — r0))

Sugar level increasing and rate of increase stable CompDose = round ((r2 —r1)/4)
or increasing r2 >r1 & ((r2 —r1) = (r1 — r0)) If rounded result = 0 then

CompDose = MinimumDose
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Figure 4.15 Use cases
for the Mentcare system

4.4.3 Use cases

Use cases are a way of describing interactions between users and a system using a
graphical model and structured text. They were first introduced in the Objectory
method (Jacobsen et al. 1993) and have now become a fundamental feature of the
Unified Modeling Language (UML). In their simplest form, a use case identifies the
actors involved in an interaction and names the type of interaction. You then add
additional information describing the interaction with the system. The additional
information may be a textual description or one or more graphical models such as
the UML sequence or state charts (see Chapter 5).

Use cases are documented using a high-level use case diagram. The set of use
cases represents all of the possible interactions that will be described in the system
requirements. Actors in the process, who may be human or other systems, are repre-
sented as stick figures. Each class of interaction is represented as a named ellipse.
Lines link the actors with the interaction. Optionally, arrowheads may be added to
lines to show how the interaction is initiated. This is illustrated in Figure 4.15, which
shows some of the use cases for the Mentcare system.

Use cases identify the individual interactions between the system and its users or
other systems. Each use case should be documented with a textual description. These
can then be linked to other models in the UML that will develop the scenario in more
detail. For example, a brief description of the Setup Consultation use case from
Figure 4.15 might be:

Setup consultation allows two or more doctors, working in different offices, to
view the same patient record at the same time. One doctor initiates the consul-
tation by choosing the people involved from a dropdown menu of doctors who
are online. The patient record is then displayed on their screens, but only the
initiating doctor can edit the record. In addition, a text chat window is created
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to help coordinate actions. It is assumed that a phone call for voice communi-
cation can be separately arranged.

The UML is a standard for object-oriented modeling, so use cases and use case-
based elicitation are used in the requirements engineering process. However, my
experience with use cases is that they are too fine-grained to be useful in discussing
requirements. Stakeholders don’t understand the term use case; they don’t find the
graphical model to be useful, and they are often not interested in a detailed descrip-
tion of each and every system interaction. Consequently, I find use cases to be more
helpful in systems design than in requirements engineering. I discuss use cases fur-
ther in Chapter 5, which shows how they are used alongside other system models to
document a system design.

Some people think that each use case is a single, low-level interaction scenario.
Others, such as Stevens and Pooley (Stevens and Pooley 2006), suggest that each use
case includes a set of related, low-level scenarios. Each of these scenarios is a single
thread through the use case. Therefore, there would be a scenario for the normal
interaction plus scenarios for each possible exception. In practice, you can use them
in either way.

The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS) is an official statement of what the system developers should
implement. It may include both the user requirements for a system and a detailed
specification of the system requirements. Sometimes the user and system require-
ments are integrated into a single description. In other cases, the user requirements
are described in an introductory chapter in the system requirements specification.

Requirements documents are essential when systems are outsourced for development,
when different teams develop different parts of the system, and when a detailed analysis
of the requirements is mandatory. In other circumstances, such as software product or
business system development, a detailed requirements document may not be needed.

Agile methods argue that requirements change so rapidly that a requirements
document is out of date as soon as it is written, so the effort is largely wasted. Rather
than a formal document, agile approaches often collect user requirements incremen-
tally and write these on cards or whiteboards as short user stories. The user then
prioritizes these stories for implementation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I think that it is still useful to write a short supporting docu-
ment that defines the business and dependability requirements for the system; it is
easy to forget the requirements that apply to the system as a whole when focusing on
the functional requirements for the next system release.

The requirements document has a diverse set of users, ranging from the senior
management of the organization that is paying for the system to the engineers
responsible for developing the software. Figure 4.16 shows possible users of the
document and how they use it.
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Figure 4.16 Users of a
requirements document

Specify the requirements and
System read them to check that they
customers > meet their needs. Customers
specify changes to the
requirements.
Use the requirements
Managers » | document to plan a bid for
the system and to plan the
system development process.
System Use the requirements to )
engineers > understand what system is
to be developed.
System test _ Use the requirements to
engineers > develop validation tests for
the system.
System Use the requirements to
maintenance | understand the system and
engineers the relationships between its
parts.

The diversity of possible users means that the requirements document has to be a
compromise. It has to describe the requirements for customers, define the require-
ments in precise detail for developers and testers, as well as include information
about future system evolution. Information on anticipated changes helps system
designers to avoid restrictive design decisions and maintenance engineers to adapt
the system to new requirements.

The level of detail that you should include in a requirements document depends
on the type of system that is being developed and the development process used.
Critical systems need detailed requirements because safety and security have to be
analyzed in detail to find possible requirements errors. When the system is to be
developed by a separate company (e.g., through outsourcing), the system specifica-
tions need to be detailed and precise. If an in-house, iterative development process is
used, the requirements document can be less detailed. Details can be added to the
requirements and ambiguities resolved during development of the system.

Figure 4.17 shows one possible organization for a requirements document that is
based on an IEEE standard for requirements documents (IEEE 1998). This standard
is a generic one that can be adapted to specific uses. In this case, the standard has
been extended to include information about predicted system evolution. This infor-
mation helps the maintainers of the system and allows designers to include support
for future system features.
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Chapter Description

Preface This defines the expected readership of the document and describe its version history,
including a rationale for the creation of a new version and a summary of the changes
made in each version.

Introduction This describes the need for the system. It should briefly describe the system’s functions
and explain how it will work with other systems. It should also describe how the system
fits into the overall business or strategic objectives of the organization commissioning the

software.
Glossary This defines the technical terms used in the document. You should not make assumptions
about the experience or expertise of the reader.
User Here, you describe the services provided for the user. The nonfunctional system
requirements requirements should also be described in this section. This description may use natural
definition language, diagrams, or other notations that are understandable to customers. Product and
process standards that must be followed should be specified.
System This chapter presents a high-level overview of the anticipated system architecture, showing
architecture the distribution of functions across system modules. Architectural components that are
reused should be highlighted.
System This describes the functional and nonfunctional requirements in more detail. If necessary,
requirements further detail may also be added to the nonfunctional requirements. Interfaces to other
specification systems may be defined.
System This chapter includes graphical system models showing the relationships between the
models system components and the system and its environment. Examples of possible models are
object models, data-flow models, or semantic data models.
System This describes the fundamental assumptions on which the system is based, and any
evolution anticipated changes due to hardware evolution, changing user needs, and so on. This

section is useful for system designers as it may help them avoid design decisions that
would constrain likely future changes to the system.

Appendices These provide detailed, specific information that is related to the application being
developed—for example, hardware and database descriptions. Hardware requirements
define the minimal and optimal configurations for the system. Database requirements define
the logical organization of the data used by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic index,
there may be an index of diagrams, an index of functions, and so on.

Figure 4.17 The
structure of a
requirements

document Naturally, the information included in a requirements document depends on the

type of software being developed and the approach to development that is to be used.
A requirements document with a structure like that shown in Figure 4.17 might be
produced for a complex engineering system that includes hardware and software
developed by different companies. The requirements document is likely to be long
and detailed. It is therefore important that a comprehensive table of contents and doc-
ument index be included so that readers can easily find the information they need.

By contrast, the requirements document for an in-house software product will
leave out many of detailed chapters suggested above. The focus will be on defining
the user requirements and high-level, nonfunctional system requirements. The sys-
tem designers and programmers use their judgment to decide how to meet the out-
line user requirements for the system.
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@ Requirements document standards

A number of large organizations, such as the U.S. Department of Defense and the IEEE, have defined standards
for requirements documents. These are usually very generic but are nevertheless useful as a basis for develop-
ing more detailed organizational standards. The U.S. Institute of Electrical and Electronic Engineers (IEEE) is one
of the best-known standards providers, and they have developed a standard for the structure of requirements
documents. This standard is most appropriate for systems such as military command and control systems that
have a long lifetime and are usually developed by a group of organizations.

http://software-engineering-book.com/web/requirements-standard/

Requirements validation

Requirements validation is the process of checking that requirements define the sys-
tem that the customer really wants. It overlaps with elicitation and analysis, as it is
concerned with finding problems with the requirements. Requirements validation is
critically important because errors in a requirements document can lead to extensive
rework costs when these problems are discovered during development or after the
system is in service.

The cost of fixing a requirements problem by making a system change is usually
much greater than repairing design or coding errors. A change to the requirements
usually means that the system design and implementation must also be changed.
Furthermore, the system must then be retested.

During the requirements validation process, different types of checks should be
carried out on the requirements in the requirements document. These checks include:

1. Validity checks These check that the requirements reflect the real needs of sys-
tem users. Because of changing circumstances, the user requirements may have
changed since they were originally elicited.

2. Consistency checks Requirements in the document should not conflict. That is,
there should not be contradictory constraints or different descriptions of the
same system function.

3. Completeness checks The requirements document should include requirements
that define all functions and the constraints intended by the system user.

4. Realism checks By using knowledge of existing technologies, the requirements
should be checked to ensure that they can be implemented within the proposed
budget for the system. These checks should also take account of the budget and
schedule for the system development.

5. Verifiability To reduce the potential for dispute between customer and contrac-
tor, system requirements should always be written so that they are verifiable.
This means that you should be able to write a set of tests that can demonstrate
that the delivered system meets each specified requirement.
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@ Requirements reviews

A requirements review is a process in which a group of people from the system customer and the system devel-
oper read the requirements document in detail and check for errors, anomalies, and inconsistencies. Once these
have been detected and recorded, it is then up to the customer and the developer to negotiate how the identi-
fied problems should be solved.

http://software-engineering-book.com/web/requirements-reviews/

A number of requirements validation techniques can be used individually or in
conjunction with one another:

1. Requirements reviews The requirements are analyzed systematically by a team
of reviewers who check for errors and inconsistencies.

2. Prototyping This involves developing an executable model of a system and
using this with end-users and customers to see if it meets their needs and expec-
tations. Stakeholders experiment with the system and feed back requirements
changes to the development team.

3. Test-case generation Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usually
means that the requirements will be difficult to implement and should be recon-
sidered. Developing tests from the user requirements before any code is written
is an integral part of test-driven development.

You should not underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact meet a user’s
needs. Users need to picture the system in operation and imagine how that system
would fit into their work. It is hard even for skilled computer professionals to per-
form this type of abstract analysis and harder still for system users.

As a result, you rarely find all requirements problems during the requirements
validation process. Inevitably, further requirements changes will be needed to cor-
rect omissions and misunderstandings after agreement has been reached on the
requirements document.

B XA Requirements change

The requirements for large software systems are always changing. One reason for
the frequent changes is that these systems are often developed to address “wicked”
problems—problems that cannot be completely defined (Rittel and Webber 1973).
Because the problem cannot be fully defined, the software requirements are bound to
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Figure 4.18
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be incomplete. During the software development process, the stakeholders’ under-
standing of the problem is constantly changing (Figure 4.18). The system require-
ments must then evolve to reflect this changed problem understanding.

Once a system has been installed and is regularly used, new requirements inevita-
bly emerge. This is partly a consequence of errors and omissions in the original
requirements that have to be corrected. However, most changes to system require-
ments arise because of changes to the business environment of the system:

1. The business and technical environment of the system always changes after
installation. New hardware may be introduced and existing hardware updated. It
may be necessary to interface the system with other systems. Business priorities
may change (with consequent changes in the system support required), and new
legislation and regulations may be introduced that require system compliance.

2. The people who pay for a system and the users of that system are rarely the
same people. System customers impose requirements because of organizational
and budgetary constraints. These may conflict with end-user requirements, and,
after delivery, new features may have to be added for user support if the system
is to meet its goals.

3. Large systems usually have a diverse stakeholder community, with stakeholders
having different requirements. Their priorities may be conflicting or contradic-
tory. The final system requirements are inevitably a compromise, and some
stakeholders have to be given priority. With experience, it is often discovered
that the balance of support given to different stakeholders has to be changed and
the requirements re-prioritized.

As requirements are evolving, you need to keep track of individual requirements
and maintain links between dependent requirements so that you can assess the
impact of requirements changes. You therefore need a formal process for making
change proposals and linking these to system requirements. This process of “require-
ments management” should start as soon as a draft version of the requirements docu-
ment is available.

Agile development processes have been designed to cope with requirements that
change during the development process. In these processes, when a user proposes a
requirements change, this change does not go through a formal change management
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@ Enduring and volatile requirements

Some requirements are more susceptible to change than others. Enduring requirements are the requirements
that are associated with the core, slow-to-change activities of an organization. Enduring requirements are asso-
ciated with fundamental work activities. Volatile requirements are more likely to change. They are usually asso-
ciated with supporting activities that reflect how the organization does its work rather than the work itself.

http://software-engineering-book.com/web/changing-requirements/

process. Rather, the user has to prioritize that change and, if it is high priority, decide
what system features that were planned for the next iteration should be dropped for
the change to be implemented.

The problem with this approach is that users are not necessarily the best people to
decide on whether or not a requirements change is cost-effective. In systems with
multiple stakeholders, changes will benefit some stakeholders and not others. It is
often better for an independent authority, who can balance the needs of all stake-
holders, to decide on the changes that should be accepted.

Requirements management planning

Requirements management planning is concerned with establishing how a set of
evolving requirements will be managed. During the planning stage, you have to
decide on a number of issues:

1. Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced with other requirements and used in traceability
assessments.

2. A change management process This is the set of activities that assess the impact
and cost of changes. I discuss this process in more detail in the following section.

3. Traceability policies These policies define the relationships between each require-
ment and between the requirements and the system design that should be recorded.
The traceability policy should also define how these records should be maintained.

4. Tool support Requirements management involves the processing of large
amounts of information about the requirements. Tools that may be used range
from specialist requirements management systems to shared spreadsheets and
simple database systems.

Requirements management needs automated support, and the software tools for
this should be chosen during the planning phase. You need tool support for:

1. Requirements storage The requirements should be maintained in a secure, man-
aged data store that is accessible to everyone involved in the requirements engi-
neering process.
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2. Change management The process of change management (Figure 4.19) is sim-
plified if active tool support is available. Tools can keep track of suggested
changes and responses to these suggestions.

3. Traceability management As discussed above, tool support for traceability
allows related requirements to be discovered. Some tools are available which
use natural language processing techniques to help discover possible relation-
ships between requirements.

For small systems, you do not need to use specialized requirements management
tools. Requirements management can be supported using shared web documents,
spreadsheets, and databases. However, for larger systems, more specialized tool sup-
port, using systems such as DOORS (IBM 2013), makes it much easier to keep track
of a large number of changing requirements.

Requirements change management

Requirements change management (Figure 4.19) should be applied to all proposed

changes to a system’s requirements after the requirements document has been approved.

Change management is essential because you need to decide if the benefits of imple-

menting new requirements are justified by the costs of implementation. The advantage

of using a formal process for change management is that all change proposals are treated

consistently and changes to the requirements document are made in a controlled way.
There are three principal stages to a change management process:

1. Problem analysis and change specification The process starts with an identi-
fied requirements problem or, sometimes, with a specific change proposal.
During this stage, the problem or the change proposal is analyzed to check that
it is valid. This analysis is fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to withdraw
the request.

2. Change analysis and costing The effect of the proposed change is assessed
using traceability information and general knowledge of the system require-
ments. The cost of making the change is estimated in terms of modifications to
the requirements document and, if appropriate, to the system design and imple-
mentation. Once this analysis is completed, a decision is made as to whether or
not to proceed with the requirements change.
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@ Requirements traceability

You need to keep track of the relationships between requirements, their sources, and the system design so that
you can analyze the reasons for proposed changes and the impact that these changes are likely to have on
other parts of the system. You need to be able to trace how a change ripples its way through the system. Why?

http://software-engineering-book.com/web/traceability/

3. Change implementation The requirements document and, where necessary, the
system design and implementation, are modified. You should organize the
requirements document so that you can make changes to it without extensive
rewriting or reorganization. As with programs, changeability in documents is
achieved by minimizing external references and making the document sections
as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.

If a new requirement has to be urgently implemented, there is always a tempta-
tion to change the system and then retrospectively modify the requirements docu-
ment. This almost inevitably leads to the requirements specification and the system
implementation getting out of step. Once system changes have been made, it is easy
to forget to include these changes in the requirements document. In some circum-
stances, emergency changes to a system have to be made. In those cases, it is impor-
tant that you update the requirements document as soon as possible in order to
include the revised requirements.

KEY POINTS

Requirements for a software system set out what the system should do and define constraints
on its operation and implementation.

Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out.

Non-functional requirements often constrain the system being developed and the development
process being used. These might be product requirements, organizational requirements, or
external requirements. They often relate to the emergent properties of the system and therefore
apply to the system as a whole.

The requirements engineering process includes requirements elicitation, requirements
specification, requirements validation, and requirements management.

Requirements elicitation is an iterative process that can be represented as a spiral of activities—
requirements discovery, requirements classification and organization, requirements
negotiation, and requirements documentation.


http://software-engineering-book.com/web/traceability

Chapter 4 = Website 135

Requirements specification is the process of formally documenting the user and system require-
ments and creating a software requirements document.

The software requirements document is an agreed statement of the system requirements. It
should be organized so that both system customers and software developers can use it.

Requirements validation is the process of checking the requirements for validity, consistency,
completeness, realism, and verifiability.

Business, organizational, and technical changes inevitably lead to changes to the requirements
for a software system. Requirements management is the process of managing and controlling
these changes.

FURTHER READING

“Integrated Requirements Engineering: A Tutorial.” This is a tutorial paper that discusses require-
ments engineering activities and how these can be adapted to fit with modern software engineering
practice. (I. Sommerville, IEEE Software, 22(1), January-February 2005) http://dx.doi.org/10.1109/
MS.2005.13.

“Research Directions in Requirements Engineering.” This is a good survey of requirements engineer-
ing research that highlights future research challenges in the area to address issues such as scale
and agility. (B. H. C. Cheng and J. M. Atlee, Proc. Conf. on Future of Software Engineering, IEEE Com-
puter Society, 2007) http://dx.doi.org/10.1109/FOSE.2007.17.

Mastering the Requirements Process, 3rd ed. A well-written, easy-to-read book that is based on a
particular method (VOLERE) but that also includes lots of good general advice about requirements
engineering. (S. Robertson and J. Robertson, 2013, Addison-Wesley).
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EXERCISES

4.1.

4.2.

4.3.

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Identify and briefly describe four types of requirements that may be defined for a computer-
based system.

Discover ambiguities or omissions in the following statement of the requirements for part of a
drone system intended for search and recovery:

The drone, a quad chopper, will be very useful in search and recovery operations, especially in
remote areas or in extreme weather conditions. It will click high-resolution images. It will fly
according to a path preset by a ground operator, but will be able to avoid obstacles on its
own, returning to its original path whenever possible. The drone will also be able to identify
various objects and match them to the target it is looking for.

Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in a sensible way.

Write a set of non-functional requirements for the drone system, setting out its expected
safety and response time.

Using the technique suggested here, where natural language descriptions are presented in a
standard format, write plausible user requirements for the following functions:

An unattended petrol (gas) pump system that includes a credit card reader. The customer
swipes the card through the reader, then specifies the amount of fuel required. The fuel is
delivered and the customer’s account debited.

The cash-dispensing function in a bank ATM.

In an Internet banking system, a facility that allows customers to transfer funds from one
account held with the bank to another account with the same bank.

Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

Using your knowledge of how an ATM is used, develop a set of use cases that could serve as a
basis for understanding the requirements for an ATM system.

To minimize mistakes during a requirements review, an organization decides to allocate two
scribes to document the review session. Explain how this can be done.

When emergency changes have to be made to systems, the system software may have to be
modified before changes to the requirements have been approved. Suggest a model of a pro-
cess for making these modifications that will ensure that the requirements document and the
system implementation do not become inconsistent.

You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the require-
ments is different from the interpretation taken by your previous employer. Discuss what you
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should do in such a situation. You know that the costs to your current employer will increase if
the ambiguities are not resolved. However, you also have a responsibility of confidentiality to
your previous employer.
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5
S—ystem modeling

Objectives

The aim of this chapter is to introduce system models that may be
developed as part of requirements engineering and system design
processes. When you have read the chapter, you will:

m understand how graphical models can be used to represent
software systems and why several types of model are needed to
fully represent a system;

m understand the fundamental system modeling perspectives of
context, interaction, structure, and behavior;

m understand the principal diagram types in the Unified Modeling
Language (UML) and how these diagrams may be used in system
modeling;

m have been introduced to model-driven engineering, where an
executable system is automatically generated from structural and
behavioral models.

Contents

5.1 Context models

5.2 Interaction models

5.3 Structural models

5.4 Behavioral models

5.5 Model-driven engineering
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System modeling is the process of developing abstract models of a system, with each
model presenting a different view or perspective of that system. System modeling
now usually means representing a system using some kind of graphical notation
based on diagram types in the Unified Modeling Language (UML). However, it is
also possible to develop formal (mathematical) models of a system, usually as a
detailed system specification. I cover graphical modeling using the UML here, and
formal modeling is briefly discussed in Chapter 10.

Models are used during the requirements engineering process to help derive the
detailed requirements for a system, during the design process to describe the system
to engineers implementing the system, and after implementation to document the
system’s structure and operation. You may develop models of both the existing sys-
tem and the system to be developed:

1. Models of the existing system are used during requirements engineering. They
help clarify what the existing system does, and they can be used to focus a stake-
holder discussion on its strengths and weaknesses.

2. Models of the new system are used during requirements engineering to help
explain the proposed requirements to other system stakeholders. Engineers use
these models to discuss design proposals and to document the system for imple-
mentation. If you use a model-driven engineering process (Brambilla, Cabot,
and Wimmer 2012), you can generate a complete or partial system implementa-
tion from system models.

It is important to understand that a system model is not a complete representation of
system. It purposely leaves out detail to make it easier to understand. A model is an
abstraction of the system being studied rather than an alternative representation of that
system. A representation of a system should maintain all the information about the entity
being represented. An abstraction deliberately simplifies a system design and picks out
the most salient characteristics. For example, the PowerPoint slides that accompany this
book are an abstraction of the book’s key points. However, if the book were translated
from English into Italian, this would be an alternative representation. The translator’s
intention would be to maintain all the information as it is presented in English.

You may develop different models to represent the system from different
perspectives. For example:

1. An external perspective, where you model the context or environment of the
system.

2. An interaction perspective, where you model the interactions between a system
and its environment, or between the components of a system.

3. A structural perspective, where you model the organization of a system or the
structure of the data processed by the system.

4. A behavioral perspective, where you model the dynamic behavior of the system
and how it responds to events.



140 Chapter5

System modeling

@ The Unified Modeling Language

The Unified Modeling Language (UML) is a set of 13 different diagram types that may be used to model soft-
ware systems. It emerged from work in the 1990s on object-oriented modeling, where similar object-oriented
notations were integrated to create the UML. A major revision (UML 2) was finalized in 2004. The UML is uni-
versally accepted as the standard approach for developing models of software systems. Variants, such as SysML,
have been proposed for more general system modeling.

http://software-engineering-book.com/web/uml/

When developing system models, you can often be flexible in the way that the
graphical notation is used. You do not always need to stick rigidly to the details of a
notation. The detail and rigor of a model depend on how you intend to use it. There

are three ways in which graphical models are commonly used:

1. As a way to stimulate and focus discussion about an existing or proposed sys-
tem. The purpose of the model is to stimulate and focus discussion among the
software engineers involved in developing the system. The models may be
incomplete (as long as they cover the key points of the discussion), and they
may use the modeling notation informally. This is how models are normally

used in agile modeling (Ambler and Jeffries 2002).

2. As a way of documenting an existing system. When models are used as docu-
mentation, they do not have to be complete, as you may only need to use models
to document some parts of a system. However, these models have to be correct—
they should use the notation correctly and be an accurate description of the

system.

3. As a detailed system description that can be used to generate a system imple-
mentation. Where models are used as part of a model-based development pro-
cess, the system models have to be both complete and correct. They are used as
a basis for generating the source code of the system, and you therefore have to
be very careful not to confuse similar symbols, such as stick and block arrow-

heads, that may have different meanings.

In this chapter, I use diagrams defined in the Unified Modeling Language
(UML) (Rumbaugh, Jacobson, and Booch 2004; Booch, Rumbaugh, and
Jacobson 2005), which has become a standard language for object-oriented mod-
eling. The UML has 13 diagram types and so supports the creation of many
different types of system model. However, a survey (Erickson and Siau 2007)
showed that most users of the UML thought that five diagram types could repre-
sent the essentials of a system. I therefore concentrate on these five UML diagram

types here:
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1. Activity diagrams, which show the activities involved in a process or in data
processing.

2. Use case diagrams, which show the interactions between a system and its
environment.

3. Sequence diagrams, which show interactions between actors and the system and
between system components.

4. Class diagrams, which show the object classes in the system and the associa-
tions between these classes.

5. State diagrams, which show how the system reacts to internal and external events.

BEEEN Context models

At an early stage in the specification of a system, you should decide on the system
boundaries, that is, on what is and is not part of the system being developed. This
involves working with system stakeholders to decide what functionality should be
included in the system and what processing and operations should be carried out in
the system’s operational environment. You may decide that automated support for
some business processes should be implemented in the software being developed but
that other processes should be manual or supported by different systems. You should
look at possible overlaps in functionality with existing systems and decide where
new functionality should be implemented. These decisions should be made early in
the process to limit the system costs and the time needed for understanding the sys-
tem requirements and design.

In some cases, the boundary between a system and its environment is relatively
clear. For example, where an automated system is replacing an existing manual or
computerized system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you
decide what constitutes the boundary between the system and its environment during
the requirements engineering process.

For example, say you are developing the specification for the Mentcare patient
information system. This system is intended to manage information about patients
attending mental health clinics and the treatments that have been prescribed. In devel-
oping the specification for this system, you have to decide whether the system should
focus exclusively on collecting information about consultations (using other systems
to collect personal information about patients) or whether it should also collect per-
sonal patient information. The advantage of relying on other systems for patient
information is that you avoid duplicating data. The major disadvantage, however, is
that using other systems may make it slower to access information, and if these sys-
tems are unavailable, then it may be impossible to use the Mentcare system.

In some situations, the user base for a system is very diverse, and users have a
wide range of different system requirements. You may decide not to define
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boundaries explicitly but instead to develop a configurable system that can be
adapted to the needs of different users. This was the approach that we adopted in the
iLearn systems, introduced in Chapter 1. There, users range from very young
children who can’t read through to young adults, their teachers, and school adminis-
trators. Because these groups need different system boundaries, we specified a
configuration system that would allow the boundaries to be specified when the
system was deployed.

The definition of a system boundary is not a value-free judgment. Social and
organizational concerns may mean that the position of a system boundary may be
determined by nontechnical factors. For example, a system boundary may be delib-
erately positioned so that the complete analysis process can be carried out on one
site; it may be chosen so that a particularly difficult manager need not be consulted;
and it may be positioned so that the system cost is increased and the system develop-
ment division must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of the
analysis activity is the definition of that context and the dependencies that a system
has on its environment. Normally, producing a simple architectural model is the first
step in this activity.

Figure 5.1 is a context model that shows the Mentcare system and the other
systems in its environment. You can see that the Mentcare system is connected to
an appointments system and a more general patient record system with which it
shares data. The system is also connected to systems for management reporting and
hospital admissions, and a statistics system that collects information for research.
Finally, it makes use of a prescription system to generate prescriptions for patients’
medication.

Context models normally show that the environment includes several other auto-
mated systems. However, they do not show the types of relationships between the
systems in the environment and the system that is being specified. External systems
might produce data for or consume data from the system. They might share data with
the system, or they might be connected directly, through a network or not connected
at all. They might be physically co-located or located in separate buildings. All of
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these relations may affect the requirements and design of the system being defined
and so must be taken into account. Therefore, simple context models are used along
with other models, such as business process models. These describe human and auto-
mated processes in which particular software systems are used.

UML activity diagrams may be used to show the business processes in which
systems are used. Figure 5.2 is a UML activity diagram that shows where the
Mentcare system is used in an important mental health care process—involuntary
detention.

Sometimes, patients who are suffering from mental health problems may be a
danger to others or to themselves. They may therefore have to be detained against
their will in a hospital so that treatment can be administered. Such detention is sub-
ject to strict legal safeguards—for example, the decision to detain a patient must be
regularly reviewed so that people are not held indefinitely without good reason. One
critical function of the Mentcare system is to ensure that such safeguards are imple-
mented and that the rights of patients are respected.

UML activity diagrams show the activities in a process and the flow of control
from one activity to another. The start of a process is indicated by a filled circle, the
end by a filled circle inside another circle. Rectangles with round corners represent
activities, that is, the specific subprocesses that must be carried out. You may include
objects in activity charts. Figure 5.2 shows the systems that are used to support dif-
ferent subprocesses within the involuntary detection process. I have shown that these
are separate systems by using the UML stereotype feature where the type of entity in
the box between chevrons is shown.

Arrows represent the flow of work from one activity to another, and a solid bar
indicates activity coordination. When the flow from more than one activity leads to a
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solid bar, then all of these activities must be complete before progress is possible.
When the flow from a solid bar leads to a number of activities, these may be exe-
cuted in parallel. Therefore, in Figure 5.2, the activities to inform social care and the
patient’s next of kin, as well as to update the detention register, may be concurrent.

Arrows may be annotated with guards (in square brackets) that specify when that
flow is followed. In Figure 5.2, you can see guards showing the flows for patients
who are dangerous and not dangerous to society. Patients who are dangerous to soci-
ety must be detained in a secure facility. However, patients who are suicidal and are
a danger to themselves may be admitted to an appropriate ward in a hospital, where
they can be kept under close supervision.

Interaction models

All systems involve interaction of some kind. This can be user interaction, which
involves user inputs and outputs; interaction between the software being developed and
other systems in its environment; or interaction between the components of a software
system. User interaction modeling is important as it helps to identify user requirements.
Modeling system-to-system interaction highlights the communication problems that
may arise. Modeling component interaction helps us understand if a proposed system
structure is likely to deliver the required system performance and dependability.
This section discusses two related approaches to interaction modeling:

1. Use case modeling, which is mostly used to model interactions between a sys-
tem and external agents (human users or other systems).

2. Sequence diagrams, which are used to model interactions between system com-
ponents, although external agents may also be included.

Use case models and sequence diagrams present interactions at different levels of
detail and so may be used together. For example, the details of the interactions
involved in a high-level use case may be documented in a sequence diagram. The
UML also includes communication diagrams that can be used to model interactions.
I don’t describe this diagram type because communication diagrams are simply an
alternative representation of sequence diagrams.

Use case modeling

Use case modeling was originally developed by Ivar Jacobsen in the 1990s (Jacobsen
et al. 1993), and a UML diagram type to support use case modeling is part of the
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Figure 5.4 Tabular
description of the
Transfer-data use case

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a
general patient record database that is maintained by a health
authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment.

Data Patient's personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to

access the patient information and the PRS.

UML. A use case can be taken as a simple description of what a user expects from a
system in that interaction. I have discussed use cases for requirements elicitation in
Chapter 4. As I said in Chapter 4, I find use case models to be more useful in the
early stages of system design rather than in requirements engineering.

Each use case represents a discrete task that involves external interaction with a
system. In its simplest form, a use case is shown as an ellipse, with the actors
involved in the use case represented as stick figures. Figure 5.3 shows a use case
from the Mentcare system that represents the task of uploading data from the
Mentcare system to a more general patient record system. This more general system
maintains summary data about a patient rather than data about each consultation,
which is recorded in the Mentcare system.

Notice that there are two actors in this use case—the operator who is transferring
the data and the patient record system. The stick figure notation was originally devel-
oped to cover human interaction, but it is also used to represent other external sys-
tems and hardware. Formally, use case diagrams should use lines without arrows as
arrows in the UML indicate the direction of flow of messages. Obviously, in a use
case, messages pass in both directions. However, the arrows in Figure 5.3 are used
informally to indicate that the medical receptionist initiates the transaction and data
is transferred to the patient record system.

Use case diagrams give a simple overview of an interaction, and you need to add
more detail for complete interaction description. This detail can either be a simple
textual description, a structured description in a table, or a sequence diagram. You
choose the most appropriate format depending on the use case and the level of detail
that you think is required in the model. I find a standard tabular format to be the most
useful. Figure 5.4 shows a tabular description of the “Transfer data” use case.

Composite use case diagrams show a number of different use cases. Sometimes it
is possible to include all possible interactions within a system in a single composite
use case diagram. However, this may be impossible because of the number of use
cases. In such cases, you may develop several diagrams, each of which shows related
use cases. For example, Figure 5.5 shows all of the use cases in the Mentcare system
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in which the actor “Medical Receptionist” is involved. Each of these should be
accompanied by a more detailed description.

The UML includes a number of constructs for sharing all or part of a use case in
other use case diagrams. While these constructs can sometimes be helpful for system
designers, my experience is that many people, especially end-users, find them diffi-
cult to understand. For this reason, these constructs are not described here.

5.2.2 Sequence diagrams

Sequence diagrams in the UML are primarily used to model the interactions between
the actors and the objects in a system and the interactions between the objects them-
selves. The UML has a rich syntax for sequence diagrams, which allows many dif-
ferent kinds of interaction to be modeled. As space does not allow covering all
possibilities here, the focus will be on the basics of this diagram type.

As the name implies, a sequence diagram shows the sequence of interactions that
take place during a particular use case or use case instance. Figure 5.6 is an example
of a sequence diagram that illustrates the basics of the notation. This diagram models
the interactions involved in the View patient information use case, where a medical
receptionist can see some patient information.

The objects and actors involved are listed along the top of the diagram, with a
dotted line drawn vertically from these. Annotated arrows indicate interactions
between objects. The rectangle on the dotted lines indicates the lifeline of the object
concerned (i.e., the time that object instance is involved in the computation). You
read the sequence of interactions from top to bottom. The annotations on the arrows
indicate the calls to the objects, their parameters, and the return values. This example
also shows the notation used to denote alternatives. A box named alt is used with the
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Figure 5.6 Sequence
diagram for View patient
information
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conditions indicated in square brackets, with alternative interaction options sepa-
rated by a dotted line.
You can read Figure 5.6 as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the
PatientInfo object class, supplying the patient’s identifier, PID to identify the
required information. P is a user interface object, which is displayed as a form
showing patient information.

2. The instance P calls the database to return the information required, supplying
the receptionist’s identifier to allow security checking. (At this stage, it is not
important where the receptionist’s UID comes from.)

3. The database checks with an authorization system that the receptionist is author-
ized for this action.

4. If authorized, the patient information is returned and is displayed on a form on
the user’s screen. If authorization fails, then an error message is returned. The
box denoted by “alt” in the top-left corner is a choice box indicating that one of
the contained interactions will be executed. The condition that selects the choice
is shown in square brackets.

Figure 5.7 is a further example of a sequence diagram from the same system that
illustrates two additional features. These are the direct communication between the
actors in the system and the creation of objects as part of a sequence of operations. In
this example, an object of type Summary is created to hold the summary data that is
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Figure 5.7 Sequence
diagram for

Transfer Data as follows:

The receptionist logs

the PRS.

system.

on to the PRS.

to be uploaded to a national PRS (patient records system). You can read this diagram

Two options are available (as shown in the “alt” box). These allow the direct
transfer of updated patient information from the Mentcare database to the
PRS and the transfer of summary health data from the Mentcare database to

In each case, the receptionist’s permissions are checked using the authorization
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4. Personal information may be transferred directly from the user interface object
to the PRS. Alternatively, a summary record may be created from the database,
and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user logs off.

Unless you are using sequence diagrams for code generation or detailed docu-
mentation, you don’t have to include every interaction in these diagrams. If you
develop system models early in the development process to support requirements
engineering and high-level design, there will be many interactions that depend on
implementation decisions. For example, in Figure 5.7 the decision on how to get the
user identifier to check authorization is one that can be delayed. In an implementa-
tion, this might involve interacting with a User object. As this is not important at this
stage, you do not need to include it in the sequence diagram.

IEEN Structural models

5.3.1

Structural models of software display the organization of a system in terms of the
components that make up that system and their relationships. Structural models may
be static models, which show the organization of the system design, or dynamic
models, which show the organization of the system when it is executing. These are
not the same things—the dynamic organization of a system as a set of interacting
threads may be very different from a static model of the system components.

You create structural models of a system when you are discussing and designing
the system architecture. These can be models of the overall system architecture or
more detailed models of the objects in the system and their relationships.

In this section, I focus on the use of class diagrams for modeling the static struc-
ture of the object classes in a software system. Architectural design is an important
topic in software engineering, and UML component, package, and deployment dia-
grams may all be used when presenting architectural models. I cover architectural
modeling in Chapters 6 and 17.

Class diagrams

Class diagrams are used when developing an object-oriented system model to show
the classes in a system and the associations between these classes. Loosely, an object
class can be thought of as a general definition of one kind of system object. An asso-
ciation is a link between classes indicating that some relationship exists between
these classes. Consequently, each class may have to have some knowledge of its
associated class.

When you are developing models during the early stages of the software engi-
neering process, objects represent something in the real world, such as a patient, a
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Figure 5.8 UML Classes Patient
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prescription, or a doctor. As an implementation is developed, you define implemen-
tation objects to represent data that is manipulated by the system. In this section, the
focus is on the modeling of real-world objects as part of the requirements or early
software design processes. A similar approach is used for data structure modeling.

Class diagrams in the UML can be expressed at different levels of detail. When
you are developing a model, the first stage is usually to look at the world, identify
the essential objects, and represent these as classes. The simplest way of writing
these diagrams is to write the class name in a box. You can also note the existence of
an association by drawing a line between classes. For example, Figure 5.8 is a sim-
ple class diagram showing two classes, Patient and Patient Record, with an associa-
tion between them. At this stage, you do not need to say what the association is.

Figure 5.9 develops the simple class diagram in Figure 5.8 to show that objects of
class Patient are also involved in relationships with a number of other classes. In this
example, I show that you can name associations to give the reader an indication of
the type of relationship that exists.

Figures 5.8 and 5.9, shows an important feature of class diagrams—the ability to
show how many objects are involved in the association. In Figure 5.8 each end of the
association is annotated with a 1, meaning that there is a 1:1 relationship between
objects of these classes. That is, each patient has exactly one record, and each record
maintains information about exactly one patient.

As you can see from Figure 5.9, other multiplicities are possible. You can define
that an exact number of objects are involved (e.g., 1..4) or, by using a *, indicate that
there are an indefinite number of objects involved in the association. For example,
the (1..*) multiplicity in Figure 5.9 on the relationship between Patient and Condition
shows that a patient may suffer from several conditions and that the same condition
may be associated with several patients.
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Figure 5.10 A
Consultation class
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At this level of detail, class diagrams look like semantic data models. Semantic
data models are used in database design. They show the data entities, their associated
attributes, and the relations between these entities (Hull and King 1987). The UML
does not include a diagram type for database modeling, as it models data using
objects and their relationships. However, you can use the UML to represent a seman-
tic data model. You can think of entities in a semantic data model as simplified
object classes (they have no operations), attributes as object class attributes, and rela-
tions as named associations between object classes.

When showing the associations between classes, it is best to represent these classes
in the simplest possible way, without attributes or operations. To define objects in
more detail, you add information about their attributes (the object’s characteristics)
and operations (the object’s functions). For example, a Patient object has the attribute
Address, and you may include an operation called ChangeAddress, which is called
when a patient indicates that he or she has moved from one address to another.

In the UML, you show attributes and operations by extending the simple rectangle
that represents a class. I illustrate this in Figure 5.10 that shows an object represent-
ing a consultation between doctor and patient:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section. This includes the attribute names
and, optionally, their types. I don’t show the types in Figure 5.10.

3. The operations (called methods in Java and other OO programming languages)
associated with the object class are in the lower section of the rectangle. I show
some but not all operations in Figure 5.10.

In the example shown in Figure 5.10, it is assumed that doctors record voice notes
that are transcribed later to record details of the consultation. To prescribe medication,
the doctor involved must use the Prescribe method to generate an electronic prescription.
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Figure 5.11 A
generalization hierarchy

5.3.2
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Generalization

Generalization is an everyday technique that we use to manage complexity.
Rather than learn the detailed characteristics of everything that we experience, we
learn about general classes (animals, cars, houses, etc.) and learn the characteris-
tics of these classes. We then reuse knowledge by classifying things and focus on
the differences between them and their class. For example, squirrels and rats are
members of the class “rodents,” and so share the characteristics of rodents.
General statements apply to all class members; for example, all rodents have teeth
for gnawing.

When you are modeling systems, it is often useful to examine the classes in a
system to see if there is scope for generalization and class creation. This means
that common information will be maintained in one place only. This is good design
practice as it means that, if changes are proposed, then you do not have to look at
all classes in the system to see if they are affected by the change. You can make the
changes at the most general level. In object-oriented languages, such as Java,
generalization is implemented using the class inheritance mechanisms built into
the language.

The UML has a specific type of association to denote generalization, as illus-
trated in Figure 5.11. The generalization is shown as an arrowhead pointing up to
the more general class. This indicates that general practitioners and hospital doctors
can be generalized as doctors and that there are three types of Hospital Doctor:
those who have just graduated from medical school and have to be supervised
(Trainee Doctor); those who can work unsupervised as part of a consultant’s team
(Registered Doctor); and consultants, who are senior doctors with full decision-
making responsibilities.

In a generalization, the attributes and operations associated with higher-level
classes are also associated with the lower-level classes. The lower-level classes are
subclasses that inherit the attributes and operations from their superclasses. These
lower-level classes then add more specific attributes and operations.
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Figure 5.12 A
generalization hierarchy
with added detail

5.3.3

Figure 5.13 The
aggregation association
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For example, all doctors have a name and phone number, and all hospital doc-
tors have a staff number and carry a pager. General practitioners don’t have these
attributes, as they work independently, but they have an individual practice name
and address. Figure 5.12 shows part of the generalization hierarchy, which I have
extended with class attributes, for the class Doctor. The operations associated with
the class Doctor are intended to register and de-register that doctor with the
Mentcare system.

Aggregation

Objects in the real world are often made up of different parts. For example, a study
pack for a course may be composed of a book, PowerPoint slides, quizzes, and rec-
ommendations for further reading. Sometimes in a system model, you need to illus-
trate this. The UML provides a special type of association between classes called
aggregation, which means that one object (the whole) is composed of other objects
(the parts). To define aggregation, a diamond shape is added to the link next to the
class that represents the whole.

Figure 5.13 shows that a patient record is an aggregate of Patient and an indefinite
number of Consultations. That is, the record maintains personal patient information
as well as an individual record for each consultation with a doctor.

Patient record

1 1
l‘ ‘l..*

Patient Consultation
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@ Data flow diagrams

Data-flow diagrams (DFDs) are system models that show a functional perspective where each transformation
represents a single function or process. DFDs are used to show how data flows through a sequence of process-
ing steps. For example, a processing step could be the filtering of duplicate records in a customer database. The
data is transformed at each step before moving on to the next stage. These processing steps or transformations
represent software processes or functions, where data-flow diagrams are used to document a software design.
Activity diagrams in the UML may be used to represent DFDs.

http://software-engineering-book.com/web/dfds/

Behavioral models

5.4.1

Behavioral models are models of the dynamic behavior of a system as it is execut-
ing. They show what happens or what is supposed to happen when a system responds
to a stimulus from its environment. These stimuli may be either data or events:

1. Data becomes available that has to be processed by the system. The availability
of the data triggers the processing.

2. An event happens that triggers system processing. Events may have associated
data, although this is not always the case.

Many business systems are data-processing systems that are primarily driven by
data. They are controlled by the data input to the system, with relatively little exter-
nal event processing. Their processing involves a sequence of actions on that data
and the generation of an output. For example, a phone billing system will accept
information about calls made by a customer, calculate the costs of these calls, and
generate a bill for that customer.

By contrast, real-time systems are usually event-driven, with limited data pro-
cessing. For example, a landline phone switching system responds to events such as
“handset activated” by generating a dial tone, pressing keys on a handset by captur-
ing the phone number, and so on.

Data-driven modeling

Data-driven models show the sequence of actions involved in processing input data
and generating an associated output. They can be used during the analysis of require-
ments as they show end-to-end processing in a system. That is, they show the entire
sequence of actions that takes place from an initial input being processed to the cor-
responding output, which is the system’s response.

Data-driven models were among the first graphical software models. In the 1970s,
structured design methods used data-flow diagrams (DFDs) as a way to illustrate the
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umenting how data associated with a particular process moves through the system
help analysts and designers understand what is going on in the process. DFDs are
simple and intuitive and so are more accessible to stakeholders than some other types
of model. It is usually possible to explain them to potential system users who can
then participate in validating the model.

Data-flow diagrams can be represented in the UML using the activity diagram
type, described in Section 5.1. Figure 5.14 is a simple activity diagram that shows
the chain of processing involved in the insulin pump software. You can see the
processing steps, represented as activities (rounded rectangles), and the data flowing
between these steps, represented as objects (rectangles).

An alternative way of showing the sequence of processing in a system is to use
UML sequence diagrams. You have seen how these diagrams can be used to model
interaction, but if you draw these so that messages are only sent from left to right,
then they show the sequential data processing in the system. Figure 5.15 illustrates
this, using a sequence model of processing an order and sending it to a supplier.
Sequence models highlight objects in a system, whereas data-flow diagrams high-
light the operations or activities. In practice, nonexperts seem to find data-flow dia-
grams more intuitive, but engineers prefer sequence diagrams.
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Event-driven modeling

Event-driven modeling shows how a system responds to external and internal
events. It is based on the assumption that a system has a finite number of states
and that events (stimuli) may cause a transition from one state to another. For
example, a system controlling a valve may move from a state “Valve open” to a
state “Valve closed” when an operator command (the stimulus) is received. This
view of a system is particularly appropriate for real-time systems. Event-driven
modeling is used extensively when designing and documenting real-time systems
(Chapter 21).

The UML supports event-based modeling using state diagrams, which are based
on Statecharts (Harel 1987). State diagrams show system states and events that cause
transitions from one state to another. They do not show the flow of data within the
system but may include additional information on the computations carried out in
each state.

I use an example of control software for a very simple microwave oven to illus-
trate event-driven modeling (Figure 5.16). Real microwave ovens are much more
complex than this system, but the simplified system is easier to understand. This
simple oven has a switch to select full or half power, a numeric keypad to input the
cooking time, a start/stop button, and an alphanumeric display.
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I have assumed that the sequence of actions in using the microwave is as follows:

Cancel

1. Select the power level (either half power or full power).
2. Input the cooking time using a numeric keypad.

3. Press Start and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open, and, on
completion of cooking, a buzzer is sounded. The oven has a simple display that is
used to display various alerts and warning messages.

In UML state diagrams, rounded rectangles represent system states. They may
include a brief description (following “do”) of the actions taken in that state. The
labeled arrows represent stimuli that force a transition from one state to another. You
can indicate start and end states using filled circles, as in activity diagrams.

From Figure 5.16, you can see that the system starts in a waiting state and
responds initially to either the full-power or the half-power button. Users can change
their minds after selecting one of these and may press the other button. The time is
set and, if the door is closed, the Start button is enabled. Pushing this button starts the
oven operation, and cooking takes place for the specified time. This is the end of the
cooking cycle, and the system returns to the waiting state.

The problem with state-based modeling is that the number of possible states
increases rapidly. For large system models, therefore, you need to hide detail in the
models. One way to do this is by using the notion of a “superstate” that encapsulates
a number of separate states. This superstate looks like a single state on a high-level
model but is then expanded to show more detail on a separate diagram. To illustrate
this concept, consider the Operation state in Figure 5.16. This is a superstate that can
be expanded, as shown in Figure 5.17.
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Figure 5.18 States and
stimuli for the
microwave oven

5.4.3

State Description

Waiting The oven is waiting for input. The display shows the
current time.

Half power The oven power is set to 300 watts. The display shows
“Half power.”

Full power The oven power is set to 600 watts. The display shows
“Full power.”

Set time The cooking time is set to the user's input value. The display
shows the cooking time selected and is updated as the time
is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.

Display shows “Not ready.”

Enabled Oven operation is enabled. Interior oven light is off. Display
shows “Ready to cook.”

Operation Oven in operation. Interior oven light is on. Display shows the
timer countdown. On completion of cooking, the buzzer is
sounded for 5 seconds. Oven light is on. Display shows
“Cooking complete” while buzzer is sounding.

Stimulus Description

Half power The user has pressed the half-power button.
Full power The user has pressed the full-power button.
Timer The user has pressed one of the timer buttons.
Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

The Operation state includes a number of substates. It shows that operation starts
with a status check and that if any problems are discovered an alarm is indicated and
operation is disabled. Cooking involves running the microwave generator for the
specified time; on completion, a buzzer is sounded. If the door is opened during
operation, the system moves to the disabled state, as shown in Figure 5.17.

State models of a system provide an overview of event processing, but you nor-
mally have to extend this with a more detailed description of the stimuli and the system
states. You may use a table to list the states and events that stimulate state transitions
along with a description of each state and event. Figure 5.18 shows a tabular descrip-
tion of each state and how the stimuli that force state transitions are generated.

Model-driven engineering

Model-driven engineering (MDE) is an approach to software development whereby
models rather than programs are the principal outputs of the development process
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(Brambilla, Cabot, and Wimmer 2012). The programs that execute on a hardware/
software platform are generated automatically from the models. Proponents of MDE
argue that this raises the level of abstraction in software engineering so that engineers
no longer have to be concerned with programming language details or the specifics
of execution platforms.

Model-driven engineering was developed from the idea of model-driven archi-
tecture (MDA). This was proposed by the Object Management Group (OMG) as a
new software development paradigm (Mellor, Scott, and Weise 2004). MDA
focuses on the design and implementation stages of software development, whereas
MDE is concerned with all aspects of the software engineering process. Therefore,
topics such as model-based requirements engineering, software processes for
model-based development, and model-based testing are part of MDE but are not
considered in MDA.

MDA as an approach to system engineering has been adopted by a number of
large companies to support their development processes. This section focuses on the
use of MDA for software implementation rather than discuss more general aspects of
MDE. The take-up of more general model-driven engineering has been slow, and
few companies have adopted this approach throughout their software development
life cycle. In his blog, den Haan discusses possible reasons why MDE has not been
widely adopted (den Haan 2011).

B Model-driven architecture

Model-driven architecture (Mellor, Scott, and Weise 2004; Stahl and Voelter
2006) is a model-focused approach to software design and implementation that
uses a subset of UML models to describe a system. Here, models at different
levels of abstraction are created. From a high-level, platform independent model,
it is possible, in principle, to generate a working program without manual
intervention.

The MDA method recommends that three types of abstract system model should
be produced:

1. A computation independent model (CIM) CIMs model the important domain
abstractions used in a system and so are sometimes called domain models. You
may develop several different CIMs, reflecting different views of the system.
For example, there may be a security CIM in which you identify important secu-
rity abstractions such as an asset, and a role and a patient record CIM, in which
you describe abstractions such as patients and consultations.

2. A platform-independent model (PIM) PIMs model the operation of the system
without reference to its implementation. A PIM is usually described using UML
models that show the static system structure and how it responds to external and
internal events.
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3. Platform-specific models (PSM) PSMs are transformations of the platform-
independent model with a separate PSM for each application platform. In
principle, there may be layers of PSM, with each layer adding some platform-
specific detail. So, the first level PSM could be middleware-specific but
database-independent. When a specific database has been chosen, a database-
specific PSM can then be generated.

Model-based engineering allows engineers to think about systems at a high
level of abstraction, without concern for the details of their implementation. This
reduces the likelihood of errors, speeds up the design and implementation process,
and allows for the creation of reusable, platform-independent application models.
By using powerful tools, system implementations can be generated for different
platforms from the same model. Therefore, to adapt the system to some new plat-
form technology, you write a model translator for that platform. When this is
available, all platform-independent models can then be rapidly re-hosted on the
new platform.

Fundamental to MDA is the notion that transformations between models can be
defined and applied automatically by software tools, as illustrated in Figure 5.19.
This diagram also shows a final level of automatic transformation where a transfor-
mation is applied to the PSM to generate the executable code that will run on the
designated software platform. Therefore, in principle at least, executable software
can be generated from a high-level system model.

In practice, completely automated translation of models to code is rarely possi-
ble. The translation of high-level CIM to PIM models remains a research problem,
and for production systems, human intervention, illustrated using a stick figure in
Figure 5.19, is normally required. A particularly difficult problem for automated
model transformation is the need to link the concepts used in different CIMS. For
example, the concept of a role in a security CIM that includes role-driven access
control may have to be mapped onto the concept of a staff member in a hospital
CIM. Only a person who understands both security and the hospital environment can
make this mapping.
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The translation of platform-independent to platform-specific models is a simpler
technical problem. Commercial tools and open-source tools (Koegel 2012) are avail-
able that provide translators from PIMS to common platforms such as Java and
J2EE. These use an extensive library of platform-specific rules and patterns to
convert a PIM to a PSM. There may be several PSMs for each PIM in the system. If
a software system is intended to run on different platforms (e.g., J2EE and .NET),
then, in principle, you only have to maintain a single PIM. The PSMs for each
platform are automatically generated (Figure 5.20).

Although MDA support tools include platform-specific translators, these
sometimes only offer partial support for translating PIMS to PSMs. The execution
environment for a system is more than the standard execution platform, such as J2EE
or Java. It also includes other application systems, specific application libraries that
may be created for a company, external services, and user interface libraries.

These vary from one company to another, so off-the-shelf tool support is not
available that takes these into account. Therefore, when MDA is introduced into an
organization, special-purpose translators may have to be created to make use of the
facilities available in the local environment. This is one reason why many companies
have been reluctant to take on model-driven approaches to development. They do not
want to develop or maintain their own tools or to rely on small software companies,
who may go out of business, for tool development. Without these specialist tools,
model-based development requires additional manual coding which reduces the
cost-effectiveness of this approach.

I believe that there are several other reasons why MDA has not become a main-
stream approach to software development.

1. Models are a good way of facilitating discussions about a software design.
However, it does not always follow that the abstractions that are useful for dis-
cussions are the right abstractions for implementation. You may decide to use a
completely different implementation approach that is based on the reuse of off-
the-shelf application systems.

2. For most complex systems, implementation is not the major problem—
requirements engineering, security and dependability, integration with legacy
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@ Executable UML

The fundamental notion behind model-driven engineering is that completely automated transformation of
models to code should be possible. To achieve this, you have to be able to construct graphical models with
clearly defined meanings that can be compiled to executable code. You also need a way of adding information
to graphical models about the ways in which the operations defined in the model are implemented. This is
possible using a subset of UML 2, called Executable UML or xUML (Mellor and Balcer 2002).

http://software-engineering-book.com/web/xuml/

systems and testing are all more significant. Consequently, the gains from the
use of MDA are limited.

3. The arguments for platform independence are only valid for large, long-lifetime
systems, where the platforms become obsolete during a system’s lifetime. For
software products and information systems that are developed for standard plat-
forms, such as Windows and Linux, the savings from the use of MDA are likely
to be outweighed by the costs of its introduction and tooling.

4. The widespread adoption of agile methods over the same period that MDA was
evolving has diverted attention away from model-driven approaches.

The success stories for MDA (OMG 2012) have mostly come from companies
that are developing systems products, which include both hardware and software.
The software in these products has a long lifetime and may have to be modified
to reflect changing hardware technologies. The domain of application (automo-
tive, air traffic control, etc.) is often well understood and so can be formalized in
a CIM.

Hutchinson and his colleagues (Hutchinson, Rouncefield, and Whittle 2012)
report on the industrial use of MDA, and their work confirms that successes in the
use of model-driven development have been in systems products. Their assessment
suggests that companies have had mixed results when adopting this approach, but
the majority of users report that using MDA has increased productivity and reduced
maintenance costs. They found that MDA was particularly useful in facilitating
reuse, and this led to major productivity improvements.

There is an uneasy relationship between agile methods and model-driven archi-
tecture. The notion of extensive up-front modeling contradicts the fundamental ideas
in the agile manifesto and I suspect that few agile developers feel comfortable with
model-driven engineering. Ambler, a pioneer in the development of agile methods,
suggests that some aspects of MDA can be used in agile processes (Ambler 2004)
but considers automated code generation to be impractical. However, Zhang and
Patel report on Motorola’s success in using agile development with automated code
generation (Zhang and Patel 2011).
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KEY POINTS

A modelis an abstract view of a system that deliberately ignores some system details. Comple-
mentary system models can be developed to show the system’s context, interactions, structure,
and behavior.

Context models show how a system that is being modeled is positioned in an environment with
other systems and processes. They help define the boundaries of the system to be developed.

Use case diagrams and sequence diagrams are used to describe the interactions between users
and systems in the system being designed. Use cases describe interactions between a system
and external actors; sequence diagrams add more information to these by showing interactions
between system objects.

Structural models show the organization and architecture of a system. Class diagrams are used
to define the static structure of classes in a system and their associations.

Behavioral models are used to describe the dynamic behavior of an executing system. This
behavior can be modeled from the perspective of the data processed by the system or by the
events that stimulate responses from a system.

Activity diagrams may be used to model the processing of data, where each activity represents
one process step.

State diagrams are used to model a system’s behavior in response to internal or external events.

Model-driven engineering is an approach to software development in which a system is repre-
sented as a set of models that can be automatically transformed to executable code.

FURTHER READING

Any of the introductory books on the UML provide more information about the notation than I can
cover here. UML has only changed slightly in the last few years, so although some of these books
are almost 10 years old, they are still relevant.

Using UML: Software Engineering with Objects and Components, 2nd ed. This book is a short, read-
able introduction to the use of the UML in system specification and design. | think that it is excellent
for learning and understanding the UML notation, although it is less comprehensive than the
complete descriptions of UML found in the UML reference manual. (P. Stevens with R. Pooley, Addi-
son-Wesley, 2006)

Model-driven Software Engineering in Practice. This is quite a comprehensive book on model-driven
approaches with a focus on model-driven design and implementation. As well as the UML, it also
covers the development of domain-specific modeling languages. (M. Brambilla, ). Cabot, and

M. Wimmer. Morgan Claypool, 2012)
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WEBSITE

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

EXERCISES

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

Scope creep can be defined as a continuous increase in the scope of a project that can
significantly increase project cost. Explain how a proper model of the system context can
help prevent scope creeps.

The way in which a system boundary is defined and an appropriate context model is created
may have serious implications on the complexity and cost of a project. Give two examples
where this may be applicable.

You have been asked to develop a system that will help with planning large-scale events and
parties such as weddings, graduation celebrations, and birthday parties. Using an activity dia-
gram, model the process context for such a system that shows the activities involved in plan-
ning a party (booking a venue, organizing invitations, etc.) and the system elements that
might be used at each stage.

For the Mentcare system, propose a set of use cases that illustrates the interactions between a
doctor, who sees patients and prescribes medicine and treatments, and the Mentcare system.

Develop a sequence diagram showing the interactions involved when a student registers for a
course in a university. Courses may have limited enrollment, so the registration process must
include checks that places are available. Assume that the student accesses an electronic
course catalog to find out about available courses.

Look carefully at how messages and mailboxes are represented in the email system that you
use. Model the object classes that might be used in the system implementation to represent a
mailbox and an email message.

Based on your experience with a bank ATM, draw an activity diagram that models the data
processing involved when a customer withdraws cash from the machine.

Draw a sequence diagram for the same system. Explain why you might want to develop both
activity and sequence diagrams when modeling the behavior of a system.

Draw state diagrams of the control software for:
an automatic washing machine that has different programs for different types of clothes;
the software for a DVD player;

the control software for the camera on your mobile phone. Ignore the flash if you have one
on your phone.


http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design
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5.10. In principle, it is possible to generate working programs from a high-level model without
manual intervention when using model-driven architectures. Discuss some of the current
challenges that stand in the way of the existence of completely automated translation tools.

REFERENCES
Ambler, S. W. 2004. The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd ed.
Cambridge, UK: Cambridge University Press.

Ambler, S. W., and R. Jeffries. 2002. Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. New York: John Wiley & Sons.

Booch, G., J. Rumbaugh, and I. Jacobson. 2005. The Unified Modeling Language User Guide, 2nd ed.
Boston: Addison-Wesley.

Brambilla, M., J. Cabot, and M. Wimmer. 2012. Model-Driven Software Engineering in Practice. San
Rafael, CA: Morgan Claypool.

Den Haan, J. 2011. “Why There Is No Future for Model Driven Development.” http://www.
theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-
development/

Erickson, J,, and K Siau. 2007. “Theoretical and Practical Complexity of Modeling Methods.”
Comm. ACM 50 (8): 46—51. doi:10.1145/1278201.1278205.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Sci. Comput. Programming
8 (3): 231-274. d0i:10.1016/0167-6423(87)90035-9.

Hull, R, and R King. 1987. “Semantic Database Modeling: Survey, Applications and Research
Issues.” ACM Computing Surveys 19 (3): 201-260. d0i:10.1145/45072.45073.

Hutchinson, J., M. Rouncefield, and J. Whittle. 2012. “Model-Driven Engineering Practices in
Industry.” In 34th Int. Conf. on Software Engineering, 633—642. doi:10.1145/1985793.1985882.

Jacobsen, I., M. Christerson, P. Jonsson, and G. Overgaard. 1993. Object-Oriented Software
Engineering. Wokingham, UK: Addison-Wesley.

Koegel, M. 2012. “EMF Tutorial: What Every Eclipse Developer Should Know about EMF.” http://
eclipsesource.com/blogs/tutorials/emf-tutorial/

Mellor, S. )., and M. ). Balcer. 2002. Executable UML. Boston: Addison-Wesley.

Mellor, S. )., K. Scott, and D. Weise. 2004. MDA Distilled: Principles of Model-Driven Architecture.
Boston: Addison-Wesley.

OMG. 2012. “Model-Driven Architecture: Success Stories.” http://www.omg.org/mda/products_
success.htm


http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development

166 Chapter 5 = System modeling

Rumbaugh, J., I. Jacobson, and G Booch. 2004. The Unified Modelling Language Reference Manual,
2nd ed. Boston: Addison-Wesley.

Stahl, T., and M. Voelter. 2006. Model-Driven Software Development: Technology, Engineering,
Management. New York: John Wiley & Sons.

Zhang, Y., and S. Patel. 2011. “Agile Model-Driven Development in Practice.” IEEE Software 28 (2):
84—91. doi:10.1109/MS.2010.85.



6
Architectural design

Objectives

The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapter,
you will:

m understand why the architectural design of software is important;

m understand the decisions that have to be made about the software
architecture during the architectural design process;

m have been introduced to the idea of Architectural patterns, well-tried
ways of organizing software architectures that can be reused in
system designs;

m understand how Application-Specific Architectural patterns may be
used in transaction processing and language processing systems.

Contents

6.1 Architectural design decisions
6.2 Architectural views

6.3 Architectural patterns

6.4 Application architectures
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Figure 6.1 The
architecture of a packing
robot control system

Architectural design is concerned with understanding how a software system should
be organized and designing the overall structure of that system. In the model of the
software development process that I described in Chapter 2, architectural design is
the first stage in the software design process. It is the critical link between design and
requirements engineering, as it identifies the main structural components in a system
and the relationships between them. The output of the architectural design process is
an architectural model that describes how the system is organized as a set of
communicating components.

In agile processes, it is generally accepted that an early stage of an agile develop-
ment process should focus on designing an overall system architecture. Incremental
development of architectures is not usually successful. Refactoring components in
response to changes is usually relatively easy. However, refactoring the system
architecture is expensive because you may need to modify most system components
to adapt them to the architectural changes.

To help you understand what I mean by system architecture, look at Figure 6.1.
This diagram shows an abstract model of the architecture for a packing robot system.
This robotic system can pack different kinds of objects. It uses a vision component
to pick out objects on a conveyor, identify the type of object, and select the right
kind of packaging. The system then moves objects from the delivery conveyor to be
packaged. It places packaged objects on another conveyor. The architectural model
shows these components and the links between them.

In practice, there is a significant overlap between the processes of requirements
engineering and architectural design. Ideally, a system specification should not

Vision
system l
Y
~ Object Arm Gripper
identification |—> controller controller
system
A
Packaging
selection
system
A
>
Y
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include any design information. This ideal is unrealistic, however, except for very
small systems. You need to identify the main architectural components as these
reflect the high-level features of the system. Therefore, as part of the requirements
engineering process, you might propose an abstract system architecture where you
associate groups of system functions or features with large-scale components or sub-
systems. You then use this decomposition to discuss the requirements and more
detailed features of the system with stakeholders.

You can design software architectures at two levels of abstraction, which I call
architecture in the small and architecture in the large:

1. Architecture in the small is concerned with the architecture of individual pro-
grams. At this level, we are concerned with the way that an individual pro-
gram is decomposed into components. This chapter is mostly concerned with
program architectures.

2. Architecture in the large is concerned with the architecture of complex enter-
prise systems that include other systems, programs, and program components.
These enterprise systems may be distributed over different computers, which
may be owned and managed by different companies. (I cover architecture in the
large in Chapters 17 and 18.)

Software architecture is important because it affects the performance, robust-
ness, distributability, and maintainability of a system (Bosch 2000). As Bosch
explains, individual components implement the functional system requirements,
but the dominant influence on the non-functional system characteristics is the
system’s architecture. Chen et al. (Chen, Ali Babar, and Nuseibeh 2013) con-
firmed this in a study of “architecturally significant requirements” where they
found that non-functional requirements had the most significant effect on the
system’s architecture.

Bass et al. (Bass, Clements, and Kazman 2012) suggest that explicitly designing
and documenting software architecture has three advantages:

1. Stakeholder communication The architecture is a high-level presentation of the sys-
tem that may be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions
have a profound effect on whether or not the system can meet critical require-
ments such as performance, reliability, and maintainability.

3. Large-scale reuse An architectural model is a compact, manageable description
of how a system is organized and how the components interoperate. The system
architecture is often the same for systems with similar requirements and so can
support large-scale software reuse. As I explain in Chapter 15, product-line
architectures are an approach to reuse where the same architecture is reused
across a range of related systems.
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System architectures are often modeled informally using simple block diagrams,
as in Figure 6.1. Each box in the diagram represents a component. Boxes within
boxes indicate that the component has been decomposed to subcomponents. Arrows
mean that data and or control signals are passed from component to component in
the direction of the arrows. You can see many examples of this type of architectural
model in Booch’s handbook of software architecture (Booch 2014).

Block diagrams present a high-level picture of the system structure, which people
from different disciplines, who are involved in the system development process, can
readily understand. In spite of their widespread use, Bass et al. (Bass, Clements, and
Kazman 2012) dislike informal block diagrams for describing an architecture. They
claim that these informal diagrams are poor architectural representations, as they
show neither the type of the relationships among system components nor the compo-
nents’ externally visible properties.

The apparent contradictions between architectural theory and industrial prac-
tice arise because there are two ways in which an architectural model of a program
is used:

1. As a way of encouraging discussions about the system design A high-level
architectural view of a system is useful for communication with system stake-
holders and project planning because it is not cluttered with detail.
Stakeholders can relate to it and understand an abstract view of the system.
They can then discuss the system as a whole without being confused by detail.
The architectural model identifies the key components that are to be devel-
oped so that managers can start assigning people to plan the development of
these systems.

2. As a way of documenting an architecture that has been designed The aim here
is to produce a complete system model that shows the different components in a
system, their interfaces and their connections. The argument for such a model is
that such a detailed architectural description makes it easier to understand and
evolve the system.

Block diagrams are a good way of supporting communications between the peo-
ple involved in the software design process. They are intuitive, and domain experts
and software engineers can relate to them and participate in discussions about the
system. Managers find them helpful in planning the project. For many projects,
block diagrams are the only architectural description.

Ideally, if the architecture of a system is to be documented in detail, it is better to
use a more rigorous notation for architectural description. Various architectural
description languages (Bass, Clements, and Kazman 2012) have been developed for
this purpose. A more detailed and complete description means that there is less scope
for misunderstanding the relationships between the architectural components.
However, developing a detailed architectural description is an expensive and
time-consuming process. It is practically impossible to know whether or not it is
cost-effective, so this approach is not widely used.
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Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What Architectural patterns or
styles might be used?

What will be the fundamental
approach used to structure
the system?

What strategy will be used to
control the operation of the
components in the system?

How will the structural
components in the system be
decomposed into
sub-components?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

Figure 6.2 Architectural
design decisions

I ®W Architectural design decisions

Architectural design is a creative process in which you design a system organization
that will satisfy the functional and non-functional requirements of a system. There is
no formulaic architectural design process. It depends on the type of system being
developed, the background and experience of the system architect, and the specific
requirements for the system. Consequently, I think it is best to consider architectural
design as a series of decisions to be made rather than a sequence of activities.

During the architectural design process, system architects have to make a number
of structural decisions that profoundly affect the system and its development pro-
cess. Based on their knowledge and experience, they have to consider the fundamen-
tal questions shown in Figure 6.2.

Although each software system is unique, systems in the same application domain
often have similar architectures that reflect the fundamental concepts of the domain. For
example, application product lines are applications that are built around a core architecture
with variants that satisfy specific customer requirements. When designing a system archi-
tecture, you have to decide what your system and broader application classes have in com-
mon, and decide how much knowledge from these application architectures you can reuse.

For embedded systems and apps designed for personal computers and mobile
devices, you do not have to design a distributed architecture for the system. However,
most large systems are distributed systems in which the system software is distrib-
uted across many different computers. The choice of distribution architecture is a
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key decision that affects the performance and reliability of the system. This is a
major topic in its own right that I cover in Chapter 17.

The architecture of a software system may be based on a particular Architectural
pattern or style (these terms have come to mean the same thing). An Architectural
pattern is a description of a system organization (Garlan and Shaw 1993), such as a
client—server organization or a layered architecture. Architectural patterns capture
the essence of an architecture that has been used in different software systems. You
should be aware of common patterns, where they can be used, and their strengths
and weaknesses when making decisions about the architecture of a system. I cover
several frequently used patterns in Section 6.3.

Garlan and Shaw’s notion of an architectural style covers questions 4 to 6 in the
list of fundamental architectural questions shown in Figure 6.2. You have to choose
the most appropriate structure, such as client—server or layered structuring, that will
enable you to meet the system requirements. To decompose structural system units,
you decide on a strategy for decomposing components into subcomponents. Finally,
in the control modeling process, you develop a general model of the control relation-
ships between the various parts of the system and make decisions about how the
execution of components is controlled.

Because of the close relationship between non-functional system characteristics
and software architecture, the choice of architectural style and structure should
depend on the non-functional requirements of the system:

1. Performance If performance is a critical requirement, the architecture should be
designed to localize critical operations within a small number of components,
with these components deployed on the same computer rather than distributed
across the network. This may mean using a few relatively large components
rather than small, finer-grain components. Using large components reduces the
number of component communications, as most of the interactions between
related system features take place within a component. You may also consider
runtime system organizations that allow the system to be replicated and exe-
cuted on different processors.

2. Security If security is a critical requirement, a layered structure for the architec-
ture should be used, with the most critical assets protected in the innermost lay-
ers and a high level of security validation applied to these layers.

3. Safety If safety is a critical requirement, the architecture should be designed so
that safety-related operations are co-located in a single component or in a small
number of components. This reduces the costs and problems of safety validation
and may make it possible to provide related protection systems that can safely
shut down the system in the event of failure.

4. Availability If availability is a critical requirement, the architecture should be
designed to include redundant components so that it is possible to replace and
update components without stopping the system. I describe fault-tolerant sys-
tem architectures for high-availability systems in Chapter 11.
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5. Maintainability If maintainability is a critical requirement, the system architec-
ture should be designed using fine-grain, self-contained components that may
readily be changed. Producers of data should be separated from consumers, and
shared data structures should be avoided.

Obviously, there is potential conflict between some of these architectures. For
example, using large components improves performance, and using small, fine-grain
components improves maintainability. If both performance and maintainability are
important system requirements, however, then some compromise must be found.
You can sometimes do this by using different Architectural patterns or styles for
separate parts of the system. Security is now almost always a critical requirement,
and you have to design an architecture that maintains security while also satisfying
other non-functional requirements.

Evaluating an architectural design is difficult because the true test of an architec-
ture is how well the system meets its functional and non-functional requirements
when it is in use. However, you can do some evaluation by comparing your design
against reference architectures or generic Architectural patterns. Bosch’s description
(Bosch 2000) of the non-functional characteristics of some Architectural patterns can
help with architectural evaluation.

¥ A Architectural views

I explained in the introduction to this chapter that architectural models of a software
system can be used to focus discussion about the software requirements or design.
Alternatively, they may be used to document a design so that it can be used as a basis
for more detailed design and implementation of the system. In this section, I discuss
two issues that are relevant to both of these:

1. What views or perspectives are useful when designing and documenting a sys-
tem’s architecture?

2. What notations should be used for describing architectural models?

It is impossible to represent all relevant information about a system’s architecture
in a single diagram, as a graphical model can only show one view or perspective of
the system. It might show how a system is decomposed into modules, how the
runtime processes interact, or the different ways in which system components are
distributed across a network. Because all of these are useful at different times, for
both design and documentation, you usually need to present multiple views of the
software architecture.

There are different opinions as to what views are required. Krutchen (Krutchen 1995)
in his well-known 4+1 view model of software architecture, suggests that there should
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Figure 6.3 Architectural
views
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be four fundamental architectural views, which can be linked through common use
cases or scenarios (Figure 6.3). He suggests the following views:

1. A logical view, which shows the key abstractions in the system as objects or
object classes. It should be possible to relate the system requirements to entities
in this logical view.

2. A process view, which shows how, at runtime, the system is composed of inter-
acting processes. This view is useful for making judgments about non-func-
tional system characteristics such as performance and availability.

3. Adevelopment view, which shows how the software is decomposed for develop-
ment; that is, it shows the breakdown of the software into components that are
implemented by a single developer or development team. This view is useful for
software managers and programmers.

4. A physical view, which shows the system hardware and how software compo-
nents are distributed across the processors in the system. This view is useful for
systems engineers planning a system deployment.

Hofmeister et al. (Hofmeister, Nord, and Soni 2000) suggest the use of similar views
but add to this the notion of a conceptual view. This view is an abstract view of the system
that can be the basis for decomposing high-level requirements into more detailed specifi-
cations, help engineers make decisions about components that can be reused, and repre-
sent a product line (discussed in Chapter 15) rather than a single system. Figure 6.1, which
describes the architecture of a packing robot, is an example of a conceptual system view.

In practice, conceptual views of a system’s architecture are almost always devel-
oped during the design process. They are used to explain the system architecture to
stakeholders and to inform architectural decision making. During the design process,
some of the other views may also be developed when different aspects of the system
are discussed, but it is rarely necessary to develop a complete description from all
perspectives. It may also be possible to associate Architectural patterns, discussed in
the next section, with the different views of a system.
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There are differing views about whether or not software architects should use the
UML for describing and documenting software architectures. A survey in 2006 (Lange,
Chaudron, and Muskens 2006) showed that, when the UML was used, it was mostly
applied in an informal way. The authors of that paper argued that this was a bad thing.

I disagree with this view. The UML was designed for describing object-oriented
systems, and, at the architectural design stage, you often want to describe systems at a
higher level of abstraction. Object classes are too close to the implementation to be use-
ful for architectural description. I don’t find the UML to be useful during the design
process itself and prefer informal notations that are quicker to write and that can be eas-
ily drawn on a whiteboard. The UML is of most value when you are documenting an
architecture in detail or using model-driven development, as discussed in Chapter 5.

A number of researchers (Bass, Clements, and Kazman 2012) have proposed the
use of more specialized architectural description languages (ADLs) to describe system
architectures. The basic elements of ADLs are components and connectors, and they
include rules and guidelines for well-formed architectures. However, because ADLs
are specialist languages, domain and application specialists find it hard to understand
and use ADLs. There may be some value in using domain-specific ADLs as part of
model-driven development, but I do not think they will become part of mainstream
software engineering practice. Informal models and notations, such as the UML, will
remain the most commonly used ways of documenting system architectures.

Users of agile methods claim that detailed design documentation is mostly
unused. It is, therefore, a waste of time and money to develop these documents. I
largely agree with this view, and I think that, except for critical systems, it is not
worth developing a detailed architectural description from Krutchen’s four perspec-
tives. You should develop the views that are useful for communication and not worry
about whether or not your architectural documentation is complete.

XN Architectural patterns

The idea of patterns as a way of presenting, sharing, and reusing knowledge about
software systems has been adopted in a number of areas of software engineering. The
trigger for this was the publication of a book on object-oriented design patterns
(Gamma et al. 1995). This prompted the development of other types of patterns, such
as patterns for organizational design (Coplien and Harrison 2004), usability patterns
(Usability Group 1998), patterns of cooperative interaction (Martin and Sommerville
2004), and configuration management patterns (Berczuk and Appleton 2002).

Architectural patterns were proposed in the 1990s under the name “architectural
styles” (Shaw and Garlan 1996). A very detailed five-volume series of handbooks on
pattern-oriented software architecture was published between 1996 and 2007
(Buschmann et al. 1996; Schmidt et al. 2000; Buschmann, Henney, and Schmidt
2007a, 2007b; Kircher and Jain 2004).

In this section, I introduce Architectural patterns and briefly describe a selection of
Architectural patterns that are commonly used. Patterns may be described in a stand-
ard way (Figures 6.4 and 6.5) using a mixture of narrative description and diagrams.
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Figure 6.4 The
Model-View-Controller
(MVC) pattern

Figure 6.5 The
organization of the
Model-View-Controller

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The
system is structured into three logical components that interact with
each other. The Model component manages the system data and
associated operations on that data. The View component defines and
manages how the data is presented to the user. The Controller compo-
nent manages user interaction (e.g., key presses, mouse clicks, etc.) and

passes these interactions to the View and the Model. See Figure 6.5.

Example Figure 6.6 shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data.
Also used when the future requirements for interaction and

presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice
versa. Supports presentation of the same data in different ways, with

changes made in one representation shown in all of them.

Disadvantages = May involve additional code and code complexity when the data

model and interactions are simple.

For more detailed information about patterns and their use, you should refer to the

published pattern handbooks.

You can think of an Architectural pattern as a stylized, abstract description of good

practice, which has been tried and tested in different systems and environments. So,
an Architectural pattern should describe a system organization that has been success-
ful in previous systems. It should include information on when it is and is not appro-
priate to use that pattern, and details on the pattern’s strengths and weaknesses.
Figure 6.4 describes the well-known Model-View-Controller pattern. This pattern
is the basis of interaction management in many web-based systems and is supported
by most language frameworks. The stylized pattern description includes the pattern
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Figure 6.6 Web
application architecture
using the MVC pattern
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name, a brief description, a graphical model, and an example of the type of system
where the pattern is used. You should also include information about when the
pattern should be used and its advantages and disadvantages.

Graphical models of the architecture associated with the MVC pattern are shown
in Figures 6.5 and 6.6. These present the architecture from different views: Figure 6.5
is a conceptual view, and Figure 6.6 shows a runtime system architecture when this
pattern is used for interaction management in a web-based system.

In this short space, it is impossible to describe all of the generic patterns that
can be used in software development. Instead, I present some selected examples of
patterns that are widely used and that capture good architectural design principles.

Layered architecture

The notions of separation and independence are fundamental to architectural design
because they allow changes to be localized. The MVC pattern, shown in Figure 6.4,
separates elements of a system, allowing them to change independently. For example,
adding a new view or changing an existing view can be done without any changes to
the underlying data in the model. The Layered Architecture pattern is another way of
achieving separation and independence. This pattern is shown in Figure 6.7. Here, the
system functionality is organized into separate layers, and each layer only relies on
the facilities and services offered by the layer immediately beneath it.

This layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made availa-
ble to users. The architecture is also changeable and portable. If its interface is
unchanged, a new layer with extended functionality can replace an existing layer
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Name Layered architecture

Description

Example

When used

Advantages

Disadvantages

Organizes the system into layers, with related functionality associated with each layer. A layer
provides services to the layer above it, so the lowest level layers represent core services that
are likely to be used throughout the system. See Figure 6.8.

A layered model of a digital learning system to support learning of all subjects in schools (Figure 6.9).

Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multilevel security.

Allows replacement of entire layers as long as the interface is maintained. Redundant facilities
(e.g., authentication) can be provided in each layer to increase the dependability of the system.

In practice, providing a clean separation between layers is often difficult, and a high-level layer
may have to interact directly with lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple levels of interpretation of a
service request as it is processed at each layer.

Figure 6.7 The
Layered Architecture
pattern

Figure 6.8 A generic
layered architecture

without changing other parts of the system. Furthermore, when layer interfaces
change or new facilities are added to a layer, only the adjacent layer is affected. As
layered systems localize machine dependencies, this makes it easier to provide
multi-platform implementations of an application system. Only the machine-
dependent layers need be reimplemented to take account of the facilities of a different
operating system or database.

Figure 6.8 is an example of a layered architecture with four layers. The lowest
layer includes system support software—typically, database and operating system
support. The next layer is the application layer, which includes the components
concerned with the application functionality and utility components used by other
application components.

The third layer is concerned with user interface management and providing user
authentication and authorization, with the top layer providing user interface facili-
ties. Of course, the number of layers is arbitrary. Any of the layers in Figure 6.6
could be split into two or more layers.

User interface

User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database, etc.)
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Figure 6.9 The
architecture of the
iLearn system
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Figure 6.9 shows that the iLearn digital learning system, introduced in Chapter 1,
has a four-layer architecture that follows this pattern. You can see another example
of the Layered Architecture pattern in Figure 6.19 (Section 6.4, which shows the
organization of the Mentcare system.

6.3.2 Repository architecture

Figure 6.10 The
Repository pattern

The layered architecture and MVC patterns are examples of patterns where the view
presented is the conceptual organization of a system. My next example, the Repository
pattern (Figure 6.10), describes how a set of interacting components can share data.

Name Repository

Description

Example

When used

Advantages

Disadvantages

All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repository.

Figure 6.11 is an example of an IDE where the components use a repository of system design
information. Each software tool generates information, which is then available for use by other tools.

You should use this pattern when you have a system in which large volumes of information are
generated that has to be stored for a long time. You may also use it in data-driven systems where
the inclusion of data in the repository triggers an action or tool.

Components can be independent; they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components. All data
can be managed consistently (e.g., backups done at the same time) as it is all in one place.

The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.
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Figure 6.11 A repository
architecture for an IDE
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The majority of systems that use large amounts of data are organized around a shared
database or repository. This model is therefore suited to applications in which data is
generated by one component and used by another. Examples of this type of system
include command and control systems, management information systems, Computer-
Aided Design (CAD) systems, and interactive development environments for software.

Figure 6.11 illustrates a situation in which a repository might be used. This diagram
shows an IDE that includes different tools to support model-driven development. The
repository in this case might be a version-controlled environment (as discussed in
Chapter 25) that keeps track of changes to software and allows rollback to earlier versions.

Organizing tools around a repository is an efficient way of sharing large amounts
of data. There is no need to transmit data explicitly from one component to another.
However, components must operate around an agreed repository data model.
Inevitably, this is a compromise between the specific needs of each tool, and it may
be difficult or impossible to integrate new components if their data models do not fit
the agreed schema. In practice, it may be difficult to distribute the repository over a
number of machines. Although it is possible to distribute a logically centralized
repository, this involves maintaining multiple copies of data. Keeping these consist-
ent and up to date adds more overhead to the system.

In the repository architecture shown in Figure 6.11, the repository is passive and
control is the responsibility of the components using the repository. An alternative
approach, which has been derived for artificial intelligence (AI) systems, uses a
“blackboard” model that triggers components when particular data become availa-
ble. This is appropriate when the data in the repository is unstructured. Decisions
about which tool is to be activated can only be made when the data has been ana-
lyzed. This model was introduced by Nii (Nii 1986), and Bosch (Bosch 2000)
includes a good discussion of how this style relates to system quality attributes.

Client-server architecture

The Repository pattern is concerned with the static structure of a system and does
not show its runtime organization. My next example, the Client—Server pattern
(Figure 6.12), illustrates a commonly used runtime organization for distributed
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Name Client-server

Description In a client-server architecture, the system is presented as a set of services, with each service
delivered by a separate server. Clients are users of these services and access servers to make
use of them.

Example Figure 6.13 is an example of a film and video/DVD library organized as a client-server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because

servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure and so is susceptible to denial-of-service attacks
or server failure. Performance may be unpredictable because it depends on the network
as well as the system. Management problems may arise if servers are owned by
different organizations.

Figure 6.12 The
Client-Server pattern  systems. A system that follows the Client—Server pattern is organized as a set of ser-

vices and associated servers, and clients that access and use the services. The major
components of this model are:

1. A set of servers that offer services to other components. Examples of servers
include print servers that offer printing services, file servers that offer file man-
agement services, and a compile server that offers programming language com-
pilation services. Servers are software components, and several servers may run
on the same computer.

2. A set of clients that call on the services offered by servers. There will normally
be several instances of a client program executing concurrently on different
computers.

3. A network that allows the clients to access these services. Client—server sys-
tems are usually implemented as distributed systems, connected using Internet
protocols.

Client—server architectures are usually thought of as distributed systems architec-
tures, but the logical model of independent services running on separate servers can
be implemented on a single computer. Again, an important benefit is separation and
independence. Services and servers can be changed without affecting other parts of
the system.

Clients may have to know the names of the available servers and the services
they provide. However, servers do not need to know the identity of clients or how
many clients are accessing their services. Clients access the services provided by a
server through remote procedure calls using a request-reply protocol (such as http),
where a client makes a request to a server and waits until it receives a reply from
that server.
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Figure 6.13 A client-

server architecture for a

film library

6.3.4

( Client1 ) ( Client2 ) ( Client3 ) ( Client 4 )

\ A A

Internet
( \

A [

Y \

A [

Y \
Catalog Video Picture
server server server
Library l Film store J

catalogue

Figure 6.13 is an example of a system that is based on the client—server model.
This is a multiuser, web-based system for providing a film and photograph library.
In this system, several servers manage and display the different types of media.
Video frames need to be transmitted quickly and in synchrony but at relatively low
resolution. They may be compressed in a store, so the video server can handle
video compression and decompression in different formats. Still pictures, how-
ever, must be maintained at a high resolution, so it is appropriate to maintain them
on a separate server.

The catalog must be able to deal with a variety of queries and provide links into
the web information system that include data about the film and video clips, and an
e-commerce system that supports the sale of photographs, film, and video clips. The
client program is simply an integrated user interface, constructed using a web
browser, to access these services.

The most important advantage of the client—server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the system
or to upgrade servers transparently without affecting other parts of the system. I
cover distributed architectures in Chapter 17, where I explain the client—server
model and its variants in more detail.

\
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Pipe and filter architecture

My final example of a general Architectural pattern is the Pipe and Filter pattern
(Figure 6.14). This is a model of the runtime organization of a system where
functional transformations process their inputs and produce outputs. Data flows
from one to another and is transformed as it moves through the sequence. Each
processing step is implemented as a transform. Input data flows through these
transforms until converted to output. The transformations may execute sequen-
tially or in parallel. The data can be processed by each transform item by item or
in a single batch.
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Name Pipe and filter

Description

Example

When used

Advantages

Disadvantages

The processing of the data in a system is organized so that each processing component
(filter) is discrete and carries out one type of data transformation. The data flows (as in a
pipe) from one component to another for processing.

Figure 6.15 is an example of a pipe and filter system used for processing invoices.

Commonly used in data-processing applications (both batch and transaction-based)
where inputs are processed in separate stages to generate related outputs.

Easy to understand and supports transformation reuse. Workflow style matches the
structure of many business processes. Evolution by adding transformations is
straightforward. Can be implemented as either a sequential or concurrent system.

The format for data transfer has to be agreed between communicating transformations.
Each transformation must parse its input and unparse its output to the agreed form. This
increases system overhead and may mean that it is impossible to reuse architectural
components that use incompatible data structures.

Figure 6.14 The Pipe
and Filter pattern

Figure 6.15 An
example of the pipe
and filter architecture

The name “pipe and filter” comes from the original Unix system where it was
possible to link processes using “pipes.” These passed a text stream from one pro-
cess to another. Systems that conform to this model can be implemented by combin-
ing Unix commands, using pipes and the control facilities of the Unix shell. The
term filter is used because a transformation “filters out” the data it can process from
its input data stream.

Variants of this pattern have been in use since computers were first used for auto-
matic data processing. When transformations are sequential with data processed in
batches, this pipe and filter architectural model becomes a batch sequential model, a
common architecture for data-processing systems such as billing systems. The archi-
tecture of an embedded system may also be organized as a process pipeline, with
each process executing concurrently. I cover use of this pattern in embedded systems
in Chapter 21.

An example of this type of system architecture, used in a batch processing appli-
cation, is shown in Figure 6.15. An organization has issued invoices to customers.
Once a week, payments that have been made are reconciled with the invoices. For
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receipts

Read issued Identify
invoices payments
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@ Architectural patterns for control

There are specific Architectural patterns that reflect commonly used ways of organizing control in a system.
These include centralized control, based on one component calling other components, and event-based control,
where the system reacts to external events.

http://software-engineering-book.com/web/archpatterns/

those invoices that have been paid, a receipt is issued. For those invoices that have
not been paid within the allowed payment time, a reminder is issued.

Pipe and filter systems are best suited to batch processing systems and embedded
systems where there is limited user interaction. Interactive systems are difficult to
write using the pipe and filter model because of the need for a stream of data to be
processed. While simple textual input and output can be modeled in this way, graph-
ical user interfaces have more complex I/O formats and a control strategy that is
based on events such as mouse clicks or menu selections. It is difficult to implement
this as a sequential stream that conforms to the pipe and filter model.

I Application architectures

Application systems are intended to meet a business or an organizational need. All
businesses have much in common—they need to hire people, issue invoices, keep
accounts, and so on. Businesses operating in the same sector use common sector-
specific applications. Therefore, as well as general business functions, all phone
companies need systems to connect and meter calls, manage their network and issue
bills to customers. Consequently, the application systems used by these businesses
also have much in common.

These commonalities have led to the development of software architectures that
describe the structure and organization of particular types of software systems.
Application architectures encapsulate the principal characteristics of a class of sys-
tems. For example, in real-time systems, there might be generic architectural models
of different system types, such as data collection systems or monitoring systems.
Although instances of these systems differ in detail, the common architectural struc-
ture can be reused when developing new systems of the same type.

The application architecture may be reimplemented when developing new sys-
tems. However, for many business systems, application architecture reuse is implicit
when generic application systems are configured to create a new application. We
see this in the widespread use of Enterprise Resource Planning (ERP) systems and
off-the-shelf configurable application systems, such as systems for accounting and
stock control. These systems have a standard architecture and components. The
components are configured and adapted to create a specific business application.
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@ Application architectures

There are several examples of application architectures on the book’s website. These include descriptions of
batch data-processing systems, resource allocation systems, and event-based editing systems.

http://software-engineering-book.com/web/apparch/

For example, a system for supply chain management can be adapted for different
types of suppliers, goods, and contractual arrangements.

As a software designer, you can use models of application architectures in a num-
ber of ways:

1. As a starting point for the architectural design process If you are unfamiliar
with the type of application that you are developing, you can base your initial
design on a generic application architecture. You then specialize this for the
specific system that is being developed.

2. Asadesign checklist If you have developed an architectural design for an appli-
cation system, you can compare this with the generic application architecture.
You can check that your design is consistent with the generic architecture.

3. Asaway of organizing the work of the development team The application archi-
tectures identify stable structural features of the system architectures, and in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different components within the architecture.

4. As a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to see
whether there are comparable components in the application architecture.

5. As a vocabulary for talking about applications If you are discussing a specific
application or trying to compare applications, then you can use the concepts
identified in the generic architecture to talk about these applications.

There are many types of application system, and, in some cases, they may seem to
be very different. However, superficially dissimilar applications may have much in
common and thus share an abstract application architecture. I illustrate this by
describing the architectures of two types of application:

1. Transaction processing applications Transaction processing applications are
database-centered applications that process user requests for information and
update the information in a database. These are the most common types of inter-
active business systems. They are organized in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems, and booking systems.
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Figure 6.16 The
structure of transaction
processing applications
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2. Language processing systems Language processing systems are systems in
which the user’s intentions are expressed in a formal language, such as a pro-
gramming language. The language processing system processes this language
into an internal format and then interprets this internal representation. The best-
known language processing systems are compilers, which translate high-level
language programs into machine code. However, language processing systems
are also used to interpret command languages for databases and information
systems, and markup languages such as XML.

I have chosen these particular types of system because a large number of web-
based business systems are transaction processing systems, and all software devel-
opment relies on language processing systems.

Transaction processing systems

Transaction processing systems are designed to process user requests for information
from a database, or requests to update a database (Lewis, Bernstein, and Kifer 2003).
Technically, a database transaction is part of a sequence of operations and is treated
as a single unit (an atomic unit). All of the operations in a transaction have to be
completed before the database changes are made permanent. This ensures that failure
of operations within a transaction does not lead to inconsistencies in the database.

From a user perspective, a transaction is any coherent sequence of operations that
satisfies a goal, such as “find the times of flights from London to Paris.” If the user
transaction does not require the database to be changed, then it may not be necessary
to package this as a technical database transaction.

An example of a database transaction is a customer request to withdraw money from a
bank account using an ATM. This involves checking the customer account balance to see
if sufficient funds are available, modifying the balance by the amount withdrawn and
sending commands to the ATM to deliver the cash. Until all of these steps have been com-
pleted, the transaction is incomplete and the customer accounts database is not changed.

Transaction processing systems are usually interactive systems in which users
make asynchronous requests for service. Figure 6.16 illustrates the conceptual archi-
tectural structure of transaction processing applications. First, a user makes a request
to the system through an I/O processing component. The request is processed by
some application-specific logic. A transaction is created and passed to a transaction
manager, which is usually embedded in the database management system. After the
transaction manager has ensured that the transaction is properly completed, it signals
to the application that processing has finished.

Transaction processing systems may be organized as a “pipe and filter” architec-
ture, with system components responsible for input, processing, and output. For
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example, consider a banking system that allows customers to query their accounts
and withdraw cash from an ATM. The system is composed of two cooperating soft-
ware components—the ATM software and the account processing software in the
bank’s database server. The input and output components are implemented as soft-
ware in the ATM, and the processing component is part of the bank’s database
server. Figure 6.17 shows the architecture of this system, illustrating the functions of
the input, process, and output components.

Information systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled
access to a large base of information, such as a library catalog, a flight timetable, or
the records of patients in a hospital. Information systems are almost always web-
based systems, where the user interface is implemented in a web browser.

Figure 6.18 presents a very general model of an information system. The system
is modeled using a layered approach (discussed in Section 6.3) where the top layer
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User communications aue
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Figure 6.19 The
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supports the user interface and the bottom layer is the system database. The user
communications layer handles all input and output from the user interface, and the
information retrieval layer includes application-specific logic for accessing and
updating the database. The layers in this model can map directly onto servers in a
distributed Internet-based system.

As an example of an instantiation of this layered model, Figure 6.19 shows the
architecture of the Mentcare system. Recall that this system maintains and manages
details of patients who are consulting specialist doctors about mental health prob-
lems. I have added detail to each layer in the model by identifying the components
that support user communications and information retrieval and access:

1. The top layer is a browser-based user interface.

2. The second layer provides the user interface functionality that is delivered
through the web browser. It includes components to allow users to log in to the
system and checking components that ensure that the operations they use are
allowed by their role. This layer includes form and menu management compo-
nents that present information to users, and data validation components that
check information consistency.

3. The third layer implements the functionality of the system and provides
components that implement system security, patient information creation and
updating, import and export of patient data from other databases, and report
generators that create management reports.

4. Finally, the lowest layer, which is built using a commercial database manage-
ment system, provides transaction management and persistent data storage.

Information and resource management systems are sometimes also transaction pro-
cessing systems. For example, e-commerce systems are Internet-based resource
management systems that accept electronic orders for goods or services and then
arrange delivery of these goods or services to the customer. In an e-commerce
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system, the application-specific layer includes additional functionality supporting a
“shopping cart” in which users can place a number of items in separate transactions,
then pay for them all together in a single transaction.

The organization of servers in these systems usually reflects the four-layer generic
model presented in Figure 6.18. These systems are often implemented as distributed
systems with a multitier client server/architecture

1. The web server is responsible for all user communications, with the user inter-
face implemented using a web browser;

2. The application server is responsible for implementing application-specific
logic as well as information storage and retrieval requests;

3. The database server moves information to and from the database and handles

transaction management.

Using multiple servers allows high throughput and makes it possible to handle thou-
sands of transactions per minute. As demand increases, servers can be added at each
level to cope with the extra processing involved.

Language processing systems

Language processing systems translate one language into an alternative representation
of that language and, for programming languages, may also execute the resulting code.
Compilers translate a programming language into machine code. Other language pro-
cessing systems may translate an XML data description into commands to query a
database or to an alternative XML representation. Natural language processing sys-
tems may translate one natural language to another, for example, French to Norwegian.

A possible architecture for a language processing system for a programming
language is illustrated in Figure 6.20. The source language instructions define the
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program to be executed, and a translator converts these into instructions for an abstract
machine. These instructions are then interpreted by another component that fetches
the instructions for execution and executes them using (if necessary) data from the
environment. The output of the process is the result of interpreting the instructions on
the input data.

For many compilers, the interpreter is the system hardware that processes machine
instructions, and the abstract machine is a real processor. However, for dynamically
typed languages, such as Ruby or Python, the interpreter is a software component.

Programming language compilers that are part of a more general program-
ming environment have a generic architecture (Figure 6.21) that includes the fol-
lowing components:

1. Alexical analyzer, which takes input language tokens and converts them into an
internal form.

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated.

3. A syntax analyzer, which checks the syntax of the language being translated. It
uses a defined grammar of the language and builds a syntax tree.

4. A syntax tree, which is an internal structure representing the program being
compiled.

5. A semantic analyzer, which uses information from the syntax tree and the sym-
bol table to check the semantic correctness of the input language text.

6. A code generator, which “walks” the syntax tree and generates abstract
machine code.

Other components might also be included that analyze and transform the syntax
tree to improve efficiency and remove redundancy from the generated machine code.
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@ Reference

istics in that domain.

Figure 6.22 A pipe
and filter compiler
architecture

Reference architectures capture important features of system architectures in a domain. Essentially, they include
everything that might be in an application architecture, although, in reality, it is very unlikely that any individual
application would include all the features shown in a reference architecture. The main purpose of reference
architectures is to evaluate and compare design proposals, and to educate people about architectural character-

architectures

http://software-engineering-book.com/web/refarch/

In other types of language processing system, such as a natural language translator,
there will be additional components such as a dictionary. The output of the system is
translation of the input text.

Figure 6.21 illustrates how a language processing system can be part of an inte-
grated set of programming support tools. In this example, the symbol table and syn-
tax tree act as a central information repository. Tools or tool fragments communicate
through it. Other information that is sometimes embedded in tools, such as the gram-
mar definition and the definition of the output format for the program, have been
taken out of the tools and put into the repository. Therefore, a syntax-directed editor
can check that the syntax of a program is correct as it is being typed. A program
formatter can create listings of the program that highlight different syntactic ele-
ments and are therefore easier to read and understand.

Alternative Architectural patterns may be used in a language processing system
(Garlan and Shaw 1993). Compilers can be implemented using a composite of a
repository and a pipe and filter model. In a compiler architecture, the symbol table is
a repository for shared data. The phases of lexical, syntactic, and semantic analysis
are organized sequentially, as shown in Figure 6.22, and communicate through the
shared symbol table.

This pipe and filter model of language compilation is effective in batch environ-
ments where programs are compiled and executed without user interaction; for
example, in the translation of one XML document to another. It is less effective when
a compiler is integrated with other language processing tools such as a structured
editing system, an interactive debugger, or a program formatter. In this situation,
changes from one component need to be reflected immediately in other components.
It is better to organize the system around a repository, as shown in Figure 6.21 if you
are implementing a general, language-oriented programming environment.

_ | Symbol table |1

Syntax tree

Y

Lexical Syntactic Semantic Code
analysis analysis analysis generation
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KEY POINTS

A software architecture is a description of how a software system is organized. Properties of a
system such as performance, security, and availability are influenced by the architecture used.

Architectural design decisions include decisions on the type of application, the distribution of
the system, the architectural styles to be used, and the ways in which the architecture should
be documented and evaluated.

Architectures may be documented from several different perspectives or views. Possible
views include a conceptual view, a logical view, a process view, a development view, and a
physical view.

Architectural patterns are a means of reusing knowledge about generic system architectures.
They describe the architecture, explain when it may be used, and point out its advantages and
disadvantages.

Commonly used Architectural patterns include model-view-controller, layered architecture,
repository, client-server, and pipe and filter.

Generic models of application systems architectures help us understand the operation of appli-
cations, compare applications of the same type, validate application system designs, and assess
large-scale components for reuse.

Transaction processing systems are interactive systems that allow information in a database to
be remotely accessed and modified by a number of users. Information systems and resource
management systems are examples of transaction processing systems.

Language processing systems are used to translate texts from one language into another and to
carry out the instructions specified in the input language. They include a translator and an
abstract machine that executes the generated language.

FURTHER READING

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on soft-
ware architecture and has a good discussion on different architectural styles that is still relevant.
(M. Shaw and D. Garlan, 1996, Prentice-Hall).

“The Golden Age of Software Architecture.” This paper surveys the development of software archi-
tecture from its beginnings in the 1980s through to its usage in the 21st century. There is not a lot
of technical content, but it is an interesting historical overview. (M. Shaw and P. Clements, /EEE
Software, 21 (2), March—-April 2006) http://doi.dx.org/10.1109/MS.2006.58.

Software Architecture in Practice (3rd ed.). This is a practical discussion of software architec-
tures that does not oversell the benefits of architectural design. It provides a clear business
rationale, explaining why architectures are important. (L. Bass, P. Clements, and R. Kazman,
2012, Addison-Wesley).
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Handbook of Software Architecture. This is a work in progress by Grady Booch, one of the early evan-
gelists for software architecture. He has been documenting the architectures of a range of software
systems so that you can see reality rather than academic abstraction. Available on the web and
intended to appear as a book. (G. Booch, 2014) http://www.handbookofsoftwarearchitecture.com/

WEBSITE

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

EXERCISES

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

When describing a system, explain why you may have to start the design of the system archi-
tecture before the requirements specification is complete.

You have been asked to prepare and deliver a presentation to a nontechnical manager to
justify the hiring of a system architect for a new project. Write a list of bullet points setting
out the key points in your presentation in which you explain the importance of software
architecture.

Performance and security may pose to be conflicting non-functional requirements when
architecting software systems. Make an argument in support of this statement.

Draw diagrams showing a conceptual view and a process view of the architectures of the fol-
lowing systems:

A ticket machine used by passengers at a railway station.

A computer-controlled video conferencing system that allows video, audio, and computer data
to be visible to several participants at the same time.

Arobot floor-cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.

A software system will be built to allow drones to autonomously herd cattle in farms. These
drones can be remotely controlled by human operators. Explain how multiple architectural
patterns can fit together to help build this kind of system.

Suggest an architecture for a system (such as iTunes) that is used to sell and distribute music
on the Internet. What Architectural patterns are the basis for your proposed architecture?

An information system is to be developed to maintain information about assets owned by a
utility company such as buildings, vehicles, and equipment. It is intended that this will be


http://www.handbookofsoftwarearchitecture.com
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updatable by staff working in the field using mobile devices as new asset information
becomes available. The company has several existing asset databases that should be inte-
grated through this system. Design a layered architecture for this asset management system
based on the generic information system architecture shown in Figure 6.18.

6.8. Using the generic model of a language processing system presented here, design the archi-
tecture of a system that accepts natural language commands and translates these into
database queries in a language such as SQL.

6.9. Using the basic model of an information system, as presented in Figure 6.18, suggest the
components that might be part of an information system that allows users to view box office
events, available tickets and prices, and to eventually buy tickets.

6.10. Should there be a separate profession of ’software architect’ whose role is to work indepen-
dently with a customer to design the software system architecture? A separate software
company would then implement the system. What might be the difficulties of establishing
such a profession?
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D—esign and
implementation

Objectives

The objectives of this chapter are to introduce object-oriented software
design using the UML and highlight important implementation concerns.
When you have read this chapter, you will:

m understand the most important activities in a general, object-oriented
design process;

m understand some of the different models that may be used to
document an object-oriented design;

m know about the idea of design patterns and how these are a way of
reusing design knowledge and experience;

m have been introduced to key issues that have to be considered when
implementing software, including software reuse and open-source
development.

Contents

7.1 Object-oriented design using the UML
7.2 Design patterns

7.3 Implementation issues

7.4 Open-source development
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Software design and implementation is the stage in the software engineering process
at which an executable software system is developed. For some simple systems,
software engineering means software design and implementation and all other soft-
ware engineering activities are merged with this process. However, for large sys-
tems, software design and implementation is only one of a number of software
engineering processes (requirements engineering, verification and validation, etc.).

Software design and implementation activities are invariably interleaved. Software
design is a creative activity in which you identify software components and their
relationships, based on a customer’s requirements. Implementation is the process of
realizing the design as a program. Sometimes there is a separate design stage, and this
design is modeled and documented. At other times, a design is in the programmer’s
head or roughly sketched on a whiteboard or sheets of paper. Design is about how
to solve a problem, so there is always a design process. However, it isn’t always neces-
sary or appropriate to describe the design in detail using the UML or other design
description language.

Design and implementation are closely linked, and you should normally take
implementation issues into account when developing a design. For example, using
the UML to document a design may be the right thing to do if you are programming
in an object-oriented language such as Java or C#. It is less useful, I think, if you are
developing using a dynamically typed language like Python. There is no point in
using the UML if you are implementing your system by configuring an off-the-shelf
package. As I discussed in Chapter 3, agile methods usually work from informal
sketches of the design and leave design decisions to programmers.

One of the most important implementation decisions that has to be made at an
early stage of a software project is whether to build or to buy the application soft-
ware. For many types of application, it is now possible to buy off-the-shelf applica-
tion systems that can be adapted and tailored to the users’ requirements. For example,
if you want to implement a medical records system, you can buy a package that is
already used in hospitals. It is usually cheaper and faster to use this approach rather
than developing a new system in a conventional programming language.

When you develop an application system by reusing an off-the-shelf product, the
design process focuses on how to configure the system product to meet the applica-
tion requirements. You don’t develop design models of the system, such as models
of the system objects and their interactions. I discuss this reuse-based approach to
development in Chapter 15.

I assume that most readers of this book have had experience of program design
and implementation. This is something that you acquire as you learn to program
and master the elements of a programming language like Java or Python. You will
have probably learned about good programming practice in the programming lan-
guages that you have studied, as well as how to debug programs that you have
developed. Therefore, I don’t cover programming topics here. Instead, this chapter
has two aims:

1. To show how system modeling and architectural design (covered in Chapters 5
and 6) are put into practice in developing an object-oriented software design.
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2. To introduce important implementation issues that are not usually covered in
programming books. These include software reuse, configuration management
and open-source development.

As there are a vast number of different development platforms, the chapter is not
biased toward any particular programming language or implementation technology.
Therefore, I have presented all examples using the UML rather than a programming
language such as Java or Python.

I XY Object-oriented design using the UML

An object-oriented system is made up of interacting objects that maintain their own local
state and provide operations on that state. The representation of the state is private and
cannot be accessed directly from outside the object. Object-oriented design processes
involve designing object classes and the relationships between these classes. These
classes define the objects in the system and their interactions. When the design is realized
as an executing program, the objects are created dynamically from these class definitions.

Objects include both data and operations to manipulate that data. They may there-
fore be understood and modified as stand-alone entities. Changing the implementa-
tion of an object or adding services should not affect other system objects. Because
objects are associated with things, there is often a clear mapping between real-world
entities (such as hardware components) and their controlling objects in the system.
This improves the understandability, and hence the maintainability, of the design.

To develop a system design from concept to detailed, object-oriented design, you
need to:

1. Understand and define the context and the external interactions with the system.
2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.
5

Specify interfaces.

Like all creative activities, design is not a clear-cut, sequential process. You
develop a design by getting ideas, proposing solutions, and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems arise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process. Sometimes you use notations, such
as the UML, precisely to clarify aspects of the design; at other times, notations are
used informally to stimulate discussions.

I explain object-oriented software design by developing a design for part of the
embedded software for the wilderness weather station that I introduced in Chapter 1.
Wilderness weather stations are deployed in remote areas. Each weather station



7.1 m Object-oriented design using the UML 199

Figure 7.1 System
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records local weather information and periodically transfers this to a weather infor-
mation system, using a satellite link.

System context and interactions

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environment.
This is essential for deciding how to provide the required system functionality and how
to structure the system to communicate with its environment. As I discussed in Chapter 5,
understanding the context also lets you establish the boundaries of the system.

Setting the system boundaries helps you decide what features are implemented in
the system being designed and what features are in other associated systems. In this
case, you need to decide how functionality is distributed between the control system
for all of the weather stations and the embedded software in the weather station itself.

System context models and interaction models present complementary views of
the relationships between a system and its environment:

1. A system context model is a structural model that demonstrates the other sys-
tems in the environment of the system being developed.

2. An interaction model is a dynamic model that shows how the system interacts
with its environment as it is used.

The context model of a system may be represented using associations.
Associations simply show that there are some relationships between the entities
involved in the association. You can document the environment of the system using
a simple block diagram, showing the entities in the system and their associations.
Figure 7.1 shows that the systems in the environment of each weather station are a
weather information system, an onboard satellite system, and a control system. The
cardinality information on the link shows that there is a single control system but
several weather stations, one satellite, and one general weather information system.

When you model the interactions of a system with its environment, you should
use an abstract approach that does not include too much detail. One way to do this is
to use a use case model. As I discussed in Chapters 4 and 5, each use case represents
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Figure 7.2 Weather
station use cases

@ Weather station use cases

Report weather—send weather data to the weather information system
Report status—send status information to the weather information system
Restart—if the weather station is shut down, restart the system
Shutdown-shut down the weather station

Reconfigure—reconfigure the weather station software

Powersave—put the weather station into power-saving mode

Remote control-send control commands to any weather station subsystem

http://software-engineering-book.com/web/ws-use-cases/

an interaction with the system. Each possible interaction is named in an ellipse, and
the external entity involved in the interaction is represented by a stick figure.

The use case model for the weather station is shown in Figure 7.2. This shows
that the weather station interacts with the weather information system to report
weather data and the status of the weather station hardware. Other interactions are
with a control system that can issue specific weather station control commands. The
stick figure is used in the UML to represent other systems as well as human users.

Each of these use cases should be described in structured natural language. This
helps designers identify objects in the system and gives them an understanding of
what the system is intended to do. I use a standard format for this description that
clearly identifies what information is exchanged, how the interaction is initiated, and
so on. As I explain in Chapter 21, embedded systems are often modeled by describing

Report
% weather
Report status
Weather
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system

X

Control
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The weather station sends a summary of the weather data that has been collected from the
instruments in the collection period to the weather information system. The data sent are the
maximum, minimum, and average ground and air temperatures; the maximum, minimum,
and average air pressures; the maximum, minimum and average wind speeds; the total
rainfall; and the wind direction as sampled at 5-minute intervals.

The weather information system establishes a satellite communication link with the weather
station and requests transmission of the data.

The summarized data is sent to the weather information system.

Weather stations are usually asked to report once per hour, but this frequency may differ
from one station to another and may be modified in future.

how they respond to internal or external stimuli. Therefore, the stimuli and associ-
ated responses should be listed in the description. Figure 7.3 shows the description of
the Report weather use case from Figure 7.2 that is based on this approach.

Architectural design

Once the interactions between the software system and the system’s environment
have been defined, you use this information as a basis for designing the system archi-
tecture. Of course, you need to combine this knowledge with your general knowl-
edge of the principles of architectural design and with more detailed domain
knowledge. You identify the major components that make up the system and their
interactions. You may then design the system organization using an architectural
pattern such as a layered or client—server model.

The high-level architectural design for the weather station software is shown in
Figure 7.4. The weather station is composed of independent subsystems that communicate

1 1 I
«subsystem» «subsystem» «subsystem»
Fault manager Configuration manager Power manager

Communication link

1 1 1
«subsystem» «subsystem» «subsystem»
Communications Data collection Instruments
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Figure 7.5 Architecture

of data collection

system

7.1.3

Data collection

Transmitter Receiver

WeatherData

by broadcasting messages on a common infrastructure, shown as Communication link in
Figure 7.4. Each subsystem listens for messages on that infrastructure and picks up the
messages that are intended for them. This “listener model” is a commonly used architec-
tural style for distributed systems.

When the communications subsystem receives a control command, such as shut-
down, the command is picked up by each of the other subsystems, which then shut
themselves down in the correct way. The key benefit of this architecture is that it is
easy to support different configurations of subsystems because the sender of a mes-
sage does not need to address the message to a particular subsystem.

Figure 7.5 shows the architecture of the data collection subsystem, which is included
in Figure 7.4. The Transmitter and Receiver objects are concerned with managing
communications, and the WeatherData object encapsulates the information that is col-
lected from the instruments and transmitted to the weather information system. This
arrangement follows the producer—consumer pattern, discussed in Chapter 21.

Object class identification

By this stage in the design process, you should have some ideas about the essential
objects in the system that you are designing. As your understanding of the design
develops, you refine these ideas about the system objects. The use case description
helps to identify objects and operations in the system. From the description of the
Report weather use case, it is obvious that you will need to implement objects repre-
senting the instruments that collect weather data and an object representing the
summary of the weather data. You also usually need a high-level system object or
objects that encapsulate the system interactions defined in the use cases. With these
objects in mind, you can start to identify the general object classes in the system.

As object-oriented design evolved in the 1980s, various ways of identifying
object classes in object-oriented systems were suggested:

1. Use a grammatical analysis of a natural language description of the system to be
constructed. Objects and attributes are nouns; operations or services are verbs
(Abbott 1983).

2. Use tangible entities (things) in the application domain such as aircraft, roles
such as manager, events such as request, interactions such as meetings, locations
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Figure 7.6 Weather
station objects
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such as offices, organizational units such as companies, and so on (Wirfs-Brock,
Wilkerson, and Weiner 1990).

3. Use a scenario-based analysis where various scenarios of system use are identi-
fied and analyzed in turn. As each scenario is analyzed, the team responsible for
the analysis must identify the required objects, attributes, and operations (Beck
and Cunningham 1989).

In practice, you have to use several knowledge sources to discover object classes.
Object classes, attributes, and operations that are initially identified from the informal
system description can be a starting point for the design. Information from application
domain knowledge or scenario analysis may then be used to refine and extend the ini-
tial objects. This information can be collected from requirements documents, discus-
sions with users, or analyses of existing systems. As well as the objects representing
entities external to the system, you may also have to design “implementation objects”
that are used to provide general services such as searching and validity checking.

In the wilderness weather station, object identification is based on the tangible
hardware in the system. I don’t have space to include all the system objects here, but
I have shown five object classes in Figure 7.6. The Ground thermometer,
Anemometer, and Barometer objects are application domain objects, and the
WeatherStation and WeatherData objects have been identified from the system
description and the scenario (use case) description:

1. The WeatherStation object class provides the basic interface of the weather sta-
tion with its environment. Its operations are based on the interactions shown in
Figure 7.3. I use a single object class, and it includes all of these interactions.
Alternatively, you could design the system interface as several different classes,
with one class per interaction.
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2. The WeatherData object class is responsible for processing the report weather
command. It sends the summarized data from the weather station instruments to
the weather information system.

3. The Ground thermometer, Anemometer, and Barometer object classes are directly
related to instruments in the system. They reflect tangible hardware entities in the
system and the operations are concerned with controlling that hardware. These
objects operate autonomously to collect data at the specified frequency and store the
collected data locally. This data is delivered to the WeatherData object on request.

You use knowledge of the application domain to identify other objects, attributes.
and services:

1. Weather stations are often located in remote places and include various instru-
ments that sometimes go wrong. Instrument failures should be reported auto-
matically. This implies that you need attributes and operations to check the
correct functioning of the instruments.

2. There are many remote weather stations, so each weather station should have its
own identifier so that it can be uniquely identified in communications.

3. As weather stations are installed at different times, the types of instrument may
be different. Therefore, each instrument should also be uniquely identified, and
a database of instrument information should be maintained.

At this stage in the design process, you should focus on the objects themselves, with-
out thinking about how these objects might be implemented. Once you have identified
the objects, you then refine the object design. You look for common features and then
design the inheritance hierarchy for the system. For example, you may identify an
Instrument superclass, which defines the common features of all instruments, such as an
identifier, and get and test operations. You may also add new attributes and operations
to the superclass, such as an attribute that records how often data should be collected.

Design models

Design or system models, as I discussed in Chapter 5, show the objects or object classes
in a system. They also show the associations and relationships between these entities.
These models are the bridge between the system requirements and the implementation
of a system. They have to be abstract so that unnecessary detail doesn’t hide the rela-
tionships between them and the system requirements. However, they also have to
include enough detail for programmers to make implementation decisions.

The level of detail that you need in a design model depends on the design process
used. Where there are close links between requirements engineers, designers and
programmers, then abstract models may be all that are required. Specific design
decisions may be made as the system is implemented, with problems resolved
through informal discussions. Similarly, if agile development is used, outline design
models on a whiteboard may be all that is required.
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However, if a plan-based development process is used, you may need more
detailed models. When the links between requirements engineers, designers, and pro-
grammers are indirect (e.g., where a system is being designed in one part of an organ-
ization but implemented elsewhere), then precise design descriptions are needed for
communication. Detailed models, derived from the high-level abstract models, are
used so that all team members have a common understanding of the design.

An important step in the design process, therefore, is to decide on the design models
that you need and the level of detail required in these models. This depends on the type
of system that is being developed. A sequential data-processing system is quite different
from an embedded real-time system, so you need to use different types of design models.
The UML supports 13 different types of models, but, as I discussed in Chapter 5, many
of these models are not widely used. Minimizing the number of models that are produced
reduces the costs of the design and the time required to complete the design process.

When you use the UML to develop a design, you should develop two kinds of
design model:

1. Structural models, which describe the static structure of the system using object
classes and their relationships. Important relationships that may be documented
at this stage are generalization (inheritance) relationships, uses/used-by
relationships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the system and show
the expected runtime interactions between the system objects. Interactions that
may be documented include the sequence of service requests made by objects
and the state changes triggered by these object interactions.

I think three UML model types are particularly useful for adding detail to use
case and architectural models:

1. Subsystem models, which show logical groupings of objects into coherent subsys-
tems. These are represented using a form of class diagram with each subsystem
shown as a package with enclosed objects. Subsystem models are structural models.

2. Sequence models, which show the sequence of object interactions. These are
represented using a UML sequence or a collaboration diagram. Sequence models
are dynamic models.

3. State machine models, which show how objects change their state in response to
events. These are represented in the UML using state diagrams. State machine
models are dynamic models.

A subsystem model is a useful static model that shows how a design is organized into
logically related groups of objects. I have already shown this type of model in Figure 7.4
to present the subsystems in the weather mapping system. As well as subsystem models,
you may also design detailed object models, showing the objects in the systems and their
associations (inheritance, generalization, aggregation, etc.). However, there is a danger
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in doing too much modeling. You should not make detailed decisions about the imple-
mentation that are really best left until the system is implemented.

Sequence models are dynamic models that describe, for each mode of interaction,
the sequence of object interactions that take place. When documenting a design, you
should produce a sequence model for each significant interaction. If you have devel-
oped a use case model, then there should be a sequence model for each use case that
you have identified.

Figure 7.7 is an example of a sequence model, shown as a UML sequence
diagram. This diagram shows the sequence of interactions that take place when an
external system requests the summarized data from the weather station. You read
sequence diagrams from top to bottom:

1. The SatComms object receives a request from the weather information system to
collect a weather report from a weather station. It acknowledges receipt of this
request. The stick arrowhead on the sent message indicates that the external system
does not wait for a reply but can carry on with other processing.

2. SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates
that SatComms does not suspend itself waiting for a reply.

3. WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4. Commslink calls the summarize method in the object WeatherData and waits
for a reply.
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The weather data summary is computed and returned to WeatherStation via the
Commslink object.

6. WeatherStation then calls the SatComms object to transmit the summarized data
to the weather information system, through the satellite communications system.

The SatComms and WeatherStation objects may be implemented as concurrent
processes, whose execution can be suspended and resumed. The SatComms object
instance listens for messages from the external system, decodes these messages, and
initiates weather station operations.

Sequence diagrams are used to model the combined behavior of a group of objects,
but you may also want to summarize the behavior of an object or a subsystem in response
to messages and events. To do this, you can use a state machine model that shows how
the object instance changes state depending on the messages that it receives. As I discuss
in Chapter 5, the UML includes state diagrams to describe state machine models.

Figure 7.8 is a state diagram for the weather station system that shows how it
responds to requests for various services.

You can read this diagram as follows:

1. If the system state is Shutdown, then it can respond to a restart(), a reconfigure()
or a powerSave() message. The unlabeled arrow with the black blob indicates
that the Shutdown state is the initial state. A restart() message causes a transition
to normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is allowed only if the system has been shut down.
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2. In the Running state, the system expects further messages. If a shutdown() mes-
sage is received, the object returns to the shutdown state.

3. If a reportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state where
the information is transmitted to the remote system. It then returns to the Running state.

4. 1If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn
to collect its data from the associated sensors.

5. If aremoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control room.
These are not shown on this diagram.

State diagrams are useful high-level models of a system or an object’s operation.
However, you don’t need a state diagram for all of the objects in the system. Many
system objects in a system are simple, and their operation can be easily described
without a state model.

Interface specification

An important part of any design process is the specification of the interfaces between
the components in the design. You need to specify interfaces so that objects and
subsystems can be designed in parallel. Once an interface has been specified, the
developers of other objects may assume that interface will be implemented.

Interface design is concerned with specifying the detail of the interface to an
object or to a group of objects. This means defining the signatures and semantics of
the services that are provided by the object or by a group of objects. Interfaces can be
specified in the UML using the same notation as a class diagram. However, there is
no attribute section, and the UML stereotype «interface» should be included in the
name part. The semantics of the interface may be defined using the object constraint
language (OCL). I discuss the use of the OCL in Chapter 16, where I explain how it
can be used to describe the semantics of components.

You should not include details of the data representation in an interface design, as
attributes are not defined in an interface specification. However, you should include
operations to access and update data. As the data representation is hidden, it can be
easily changed without affecting the objects that use that data. This leads to a design
that is inherently more maintainable. For example, an array representation of a stack
may be changed to a list representation without affecting other objects that use the
stack. By contrast, you should normally expose the attributes in an object model, as
this is the clearest way of describing the essential characteristics of the objects.

There is not a simple 1:1 relationship between objects and interfaces. The same
object may have several interfaces, each of which is a viewpoint on the methods that
it provides. This is supported directly in Java, where interfaces are declared separately
from objects and objects “implement” interfaces. Equally, a group of objects may all
be accessed through a single interface.
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Figure 7.9 shows two interfaces that may be defined for the weather station. The left-
hand interface is a reporting interface that defines the operation names that are used to
generate weather and status reports. These map directly to operations in the WeatherStation
object. The remote control interface provides four operations, which map onto a single
method in the WeatherStation object. In this case, the individual operations are encoded
in the command string associated with the remoteControl method, shown in Figure 7.6.

Design patterns

Design patterns were derived from ideas put forward by Christopher Alexander
(Alexander 1979), who suggested that there were certain common patterns of building
design that were inherently pleasing and effective. The pattern is a description of the
problem and the essence of its solution, so that the solution may be reused in different
settings. The pattern is not a detailed specification. Rather, you can think of it as a descrip-
tion of accumulated wisdom and experience, a well-tried solution to a common problem.
A quote from the Hillside Group website (hillside.net/patterns/), which is dedi-
cated to maintaining information about patterns, encapsulates their role in reuse:

Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse
this experience®.

Patterns have made a huge impact on object-oriented software design. As well as
being tested solutions to common problems, they have become a vocabulary for talk-
ing about a design. You can therefore explain your design by describing the patterns
that you have used. This is particularly true for the best known design patterns that
were originally described by the “Gang of Four” in their patterns book, published in
1995 (Gamma et al. 1995). Other important pattern descriptions are those published
in a series of books by authors from Siemens, a large European technology company
(Buschmann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004; Buschmann,
Henney, and Schmidt 2007a, 2007b).

Patterns are a way of reusing the knowledge and experience of other designers.
Design patterns are usually associated with object-oriented design. Published patterns
often rely on object characteristics such as inheritance and polymorphism to provide
generality. However, the general principle of encapsulating experience in a pattern is

The Hlllside Group: hillside.net/patterns
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Pattern name: Observer

Description: Separates the display of the state of an object from the object itself and allows alternative displays
to be provided. When the object state changes, all displays are automatically notified and updated to reflect
the change.

Problem description: In many situations, you have to provide multiple displays of state information, such as a
graphical display and a tabular display. Not all of these may be known when the information is specified. All alter-
native presentations should support interaction and, when the state is changed, all displays must be updated.

This pattern may be used in situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Solution description: This involves two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related abstract objects. The abstract
objects include general operations that are applicable in all situations. The state to be displayed is main-
tained in ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers
(each observer corresponds to a display) and to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

The UML model of the pattern is shown in Figure 7.12.

Consequences: The subject only knows the abstract Observer and does not know details of the concrete class.
Therefore there is minimal coupling between these objects. Because of this lack of knowledge, optimizations
that enhance display performance are impractical. Changes to the subject may cause a set of linked updates
to observers to be generated, some of which may not be necessary.

Figure 7.10 The one that is equally applicable to any kind of software design. For instance, you could
Observer pattern have configuration patterns for instantiating reusable application systems.
The Gang of Four defined the four essential elements of design patterns in their
book on patterns:

1. A name that is a meaningful reference to the pattern.
2. A description of the problem area that explains when the pattern may be applied.

3. Asolution description of the parts of the design solution, their relationships and their
responsibilities. This is not a concrete design description. It is a template for a design
solution that can be instantiated in different ways. This is often expressed graphically
and shows the relationships between the objects and object classes in the solution.

4. A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether or not a pattern can be used
in a particular situation.

Gamma and his co-authors break down the problem description into motivation
(a description of why the pattern is useful) and applicability (a description of situa-
tions in which the pattern may be used). Under the description of the solution, they
describe the pattern structure, participants, collaborations, and implementation.

To illustrate pattern description, I use the Observer pattern, taken from the Gang
of Four’s patterns book. This is shown in Figure 7.10. In my description, I use the
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four essential description elements and also include a brief statement of what the
pattern can do. This pattern can be used in situations where different presentations of
an object’s state are required. It separates the object that must be displayed from the
different forms of presentation. This is illustrated in Figure 7.11, which shows two
different graphical presentations of the same dataset.

Graphical representations are normally used to illustrate the object classes in
patterns and their relationships. These supplement the pattern description and add
detail to the solution description. Figure 7.12 is the representation in UML of the
Observer pattern.

To use patterns in your design, you need to recognize that any design problem
you are facing may have an associated pattern that can be applied. Examples of such
problems, documented in the Gang of Four’s original patterns book, include:

1. Tell several objects that the state of some other object has changed (Observer pattern).

2. Tidy up the interfaces to a number of related objects that have often been devel-
oped incrementally (Facade pattern).

J Observer

Subject
Attach (Observer) Update ()
Detqch (Observer) for all o in observers
Notify () ========" | o->Update ()
ConcreteSubject ConcreteObserver
: observerState =
GetState ) """~ return subjectState Iﬁ Update () B subject -> GetState (ﬁ
subjectState observerState
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3. Provide a standard way of accessing the elements in a collection, irrespective of
how that collection is implemented (Iterator pattern).

4. Allow for the possibility of extending the functionality of an existing class at
runtime (Decorator pattern).

Patterns support high-level, concept reuse. When you try to reuse executable
components you are inevitably constrained by detailed design decisions that have
been made by the implementers of these components. These range from the particu-
lar algorithms that have been used to implement the components to the objects and
types in the component interfaces. When these design decisions conflict with your
requirements, reusing the component is either impossible or introduces inefficien-
cies into your system. Using patterns means that you reuse the ideas but can adapt
the implementation to suit the system you are developing.

When you start designing a system, it can be difficult to know, in advance, if you
will need a particular pattern. Therefore, using patterns in a design process often
involves developing a design, experiencing a problem, and then recognizing that a
pattern can be used. This is certainly possible if you focus on the 23 general-purpose
patterns documented in the original patterns book. However, if your problem is a
different one, you may find it difficult to find an appropriate pattern among the hun-
dreds of different patterns that have been proposed.

Patterns are a great idea, but you need experience of software design to use them
effectively. You have to recognize situations where a pattern can be applied. Inexperienced
programmers, even if they have read the pattern books, will always find it hard to decide
whether they can reuse a pattern or need to develop a special-purpose solution.

Implementation issues

Software engineering includes all of the activities involved in software development
from the initial requirements of the system through to maintenance and management
of the deployed system. A critical stage of this process is, of course, system imple-
mentation, where you create an executable version of the software. Implementation
may involve developing programs in high- or low-level programming languages or
tailoring and adapting generic, off-the-shelf systems to meet the specific requirements
of an organization.

I assume that most readers of this book will understand programming principles
and will have some programming experience. As this chapter is intended to offer a
language-independent approach, I haven’t focused on issues of good programming
practice as language-specific examples need to be used. Instead, I introduce some
aspects of implementation that are particularly important to software engineering
and that are often not covered in programming texts. These are:

1. Reuse Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.
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Configuration management During the development process, many different
versions of each software component are created. If you don’t keep track of
these versions in a configuration management system, you are liable to include
the wrong versions of these components in your system.

Host-target development Production software does not usually execute on the
same computer as the software development environment. Rather, you develop
it on one computer (the host system) and execute it on a separate computer (the
target system). The host and target systems are sometimes of the same type, but
often they are completely different.

7.3.1 Reuse

From the 1960s to the 1990s, most new software was developed from scratch, by
writing all code in a high-level programming language. The only significant reuse or
software was the reuse of functions and objects in programming language libraries.
However, costs and schedule pressure meant that this approach became increasingly
unviable, especially for commercial and Internet-based systems. Consequently, an
approach to development based on the reuse of existing software is now the norm for
many types of system development. A reuse-based approach is now widely used for
web-based systems of all kinds, scientific software, and, increasingly, in embedded
systems engineering.

Software reuse is possible at a number of different levels, as shown in Figure 7.13:

The abstraction level At this level, you don’t reuse software directly but rather
use knowledge of successful abstractions in the design of your software. Design
patterns and architectural patterns (covered in Chapter 6) are ways of representing
abstract knowledge for reuse.
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2. The object level At this level, you directly reuse objects from a library rather
than writing the code yourself. To implement this type of reuse, you have to find
appropriate libraries and discover if the objects and methods offer the function-
ality that you need. For example, if you need to process email messages in a
Java program, you may use objects and methods from a JavaMail library.

3. The component level Components are collections of objects and object classes
that operate together to provide related functions and services. You often have
to adapt and extend the component by adding some code of your own. An
example of component-level reuse is where you build your user interface using
a framework. This is a set of general object classes that implement event han-
dling, display management, etc. You add connections to the data to be dis-
played and write code to define specific display details such as screen layout
and colors.

4. The system level At this level, you reuse entire application systems. This function
usually involves some kind of configuration of these systems. This may be done
by adding and modifying code (if you are reusing a software product line) or by
using the system’s own configuration interface. Most commercial systems are
now built in this way where generic application systems systems are adapted and
reused. Sometimes this approach may involve integrating several application
systems to create a new system.

By reusing existing software, you can develop new systems more quickly, with
fewer development risks and at lower cost. As the reused software has been tested in
other applications, it should be more reliable than new software. However, there are
costs associated with reuse:

1. The costs of the time spent in looking for software to reuse and assessing
whether or not it meets your needs. You may have to test the software to make
sure that it will work in your environment, especially if this is different from its
development environment.

2. Where applicable, the costs of buying the reusable software. For large off-the-
shelf systems, these costs can be very high.

3. The costs of adapting and configuring the reusable software components or
systems to reflect the requirements of the system that you are developing.

4. The costs of integrating reusable software elements with each other (if you are
using software from different sources) and with the new code that you have
developed. Integrating reusable software from different providers can be diffi-
cult and expensive because the providers may make conflicting assumptions
about how their respective software will be reused.

How to reuse existing knowledge and software should be the first thing you should
think about when starting a software development project. You should consider the
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possibilities of reuse before designing the software in detail, as you may wish to adapt
your design to reuse existing software assets. As I discussed in Chapter 2, in a
reuse-oriented development process, you search for reusable elements, then modify
your requirements and design to make the best use of these.

Because of the importance of reuse in modern software engineering, I devote
several chapters in Part 3 of this book to this topic (Chapters 15, 16, and 18).

Version
management

Configuration management

In software development, change happens all the time, so change management is
absolutely essential. When several people are involved in developing a software sys-
tem, you have to make sure that team members don’t interfere with each other’s
work. That is, if two people are working on a component, their changes have to be
coordinated. Otherwise, one programmer may make changes and overwrite the oth-
er’s work. You also have to ensure that everyone can access the most up-to-date ver-
sions of software components; otherwise developers may redo work that has already
been done. When something goes wrong with a new version of a system, you have to
be able to go back to a working version of the system or component.

Configuration management is the name given to the general process of managing
a changing software system. The aim of configuration management is to support the
system integration process so that all developers can access the project code and
documents in a controlled way, find out what changes have been made, and compile
and link components to create a system. As shown in Figure 7.14, there are four
fundamental configuration management activities:

1. Version management, where support is provided to keep track of the different
versions of software components. Version management systems include facilities
to coordinate development by several programmers. They stop one developer
from overwriting code that has been submitted to the system by someone else.

2. System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This
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description is then used to build a system automatically by compiling and link-
ing the required components.

3. Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these prob-
lems and when they are fixed.

4. Release management, where new versions of a software system are released to
customers. Release management is concerned with planning the functionality of
new releases and organizing the software for distribution.

Software configuration management tools support each of the above activities.
These tools are usually installed in an integrated development environment, such as
Eclipse. Version management may be supported using a version management system
such as Subversion (Pilato, Collins-Sussman, and Fitzpatrick 2008) or Git (Loeliger
and McCullough 2012), which can support multi-site, multi-team development.
System integration support may be built into the language or rely on a separate tool-
set such as the GNU build system. Bug tracking or issue tracking systems, such as
Bugzilla, are used to report bugs and other issues and to keep track of whether or not
these have been fixed. A comprehensive set of tools built around the Git system is
available at Github (http://github.com).

Because of its importance in professional software engineering, I discuss change
and configuration management in more detail in Chapter 25.

Host-target development

Most professional software development is based on a host-target model (Figure 7.15).
Software is developed on one computer (the host) but runs on a separate machine (the
target). More generally, we can talk about a development platform (host) and an
execution platform (target). A platform is more than just hardware. It includes the
installed operating system plus other supporting software such as a database manage-
ment system or, for development platforms, an interactive development environment.


http://github.com

7.3 m Implementation issues 217

Sometimes, the development platform and execution platform are the same, mak-
ing it possible to develop the software and test it on the same machine. Therefore, if
you develop in Java, the target environment is the Java Virtual Machine. In princi-
ple, this is the same on every computer, so programs should be portable from one
machine to another. However, particularly for embedded systems and mobile
systems, the development and the execution platforms are different. You need to
either move your developed software to the execution platform for testing or run a
simulator on your development machine.

Simulators are often used when developing embedded systems. You simulate
hardware devices, such as sensors, and the events in the environment in which the
system will be deployed. Simulators speed up the development process for embed-
ded systems as each developer can have his or her own execution platform with no
need to download the software to the target hardware. However, simulators are
expensive to develop and so are usually available only for the most popular
hardware architectures.

If the target system has installed middleware or other software that you need
to use, then you need to be able to test the system using that software. It may be
impractical to install that software on your development machine, even if it is
the same as the target platform, because of license restrictions. If this is the
case, you need to transfer your developed code to the execution platform to test
the system.

A software development platform should provide a range of tools to support soft-
ware engineering processes. These may include:

1. An integrated compiler and syntax-directed editing system that allows you to
create, edit, and compile code.

2. A language debugging system.
3. Graphical editing tools, such as tools to edit UML models.

4. Testing tools, such as JUnit, that can automatically run a set of tests on a new
version of a program.

5. Tools to support refactoring and program visualization.

6. Configuration management tools to manage source code versions and to integrate
and build systems.

In addition to these standard tools, your development system may include more
specialized tools such as static analyzers (discussed in Chapter 12). Normally, devel-
opment environments for teams also include a shared server that runs a change and
configuration management system and, perhaps, a system to support requirements
management.

Software development tools are now usually installed within an integrated devel-
opment environment (IDE). An IDE is a set of software tools that supports different
aspects of software development within some common framework and user inter-
face. Generally, IDEs are created to support development in a specific programming
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@ UML deployment diagrams

UML deployment diagrams show how software components are physically deployed on processors. That is, the
deployment diagram shows the hardware and software in the system and the middleware used to connect the
different components in the system. Essentially, you can think of deployment diagrams as a way of defining and
documenting the target environment.

http://software-engineering-book.com/web/deployment/

language such as Java. The language IDE may be developed specially or may be an
instantiation of a general-purpose IDE, with specific language-support tools.

A general-purpose IDE is a framework for hosting software tools that provides data
management facilities for the software being developed and integration mechanisms
that allow tools to work together. The best-known general-purpose IDE is the Eclipse
environment (http://www.eclipse.org). This environment is based on a plug-in architec-
ture so that it can be specialized for different languages, such as Java, and application
domains. Therefore, you can install Eclipse and tailor it for your specific needs by add-
ing plug-ins. For example, you may add a set of plug-ins to support networked systems
development in Java (Vogel 2013) or embedded systems engineering using C.

As part of the development process, you need to make decisions about how the
developed software will be deployed on the target platform. This is straightforward
for embedded systems, where the target is usually a single computer. However, for
distributed systems, you need to decide on the specific platforms where the compo-
nents will be deployed. Issues that you have to consider in making this decision are:

1. The hardware and software requirements of a component If a component is
designed for a specific hardware architecture, or relies on some other software
system, it must obviously be deployed on a platform that provides the required
hardware and software support.

2. The availability requirements of the system High-availability systems may require
components to be deployed on more than one platform. This means that, in the event
of platform failure, an alternative implementation of the component is available.

3. Component communications If there is a lot of intercomponent communication, it is
usually best to deploy them on the same platform or on platforms that are physically
close to one another. This reduces communications latency—the delay between the
time that a message is sent by one component and received by another.

You can document your decisions on hardware and software deployment using
UML deployment diagrams, which show how software components are distributed
across hardware platforms.

If you are developing an embedded system, you may have to take into account
target characteristics, such as its physical size, power capabilities, the need for
real-time responses to sensor events, the physical characteristics of actuators and its
real-time operating system. I discuss embedded systems engineering in Chapter 21.
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Open-source development

Open-source development is an approach to software development in which the
source code of a software system is published and volunteers are invited to partici-
pate in the development process (Raymond 2001). Its roots are in the Free Software
Foundation (www.fsf.org), which advocates that source code should not be proprie-
tary but rather should always be available for users to examine and modify as they
wish. There was an assumption that the code would be controlled and developed by
a small core group, rather than users of the code.

Open-source software extended this idea by using the Internet to recruit a much larger
population of volunteer developers. Many of them are also users of the code. In principle
at least, any contributor to an open-source project may report and fix bugs and propose
new features and functionality. However, in practice, successful open-source systems still
rely on a core group of developers who control changes to the software.

Open-source software is the backbone of the Internet and software engineering. The
Linux operating system is the most widely used server system, as is the open-source
Apache web server. Other important and universally used open-source products are
Java, the Eclipse IDE, and the mySQL database management system. The Android
operating system is installed on millions of mobile devices. Major players in the com-
puter industry such as IBM and Oracle, support the open-source movement and base
their software on open-source products. Thousands of other, lesser-known open-source
systems and components may also be used.

It is usually cheap or even free to acquire open-source software. You can normally
download open-source software without charge. However, if you want documenta-
tion and support, then you may have to pay for this, but costs are usually fairly low.
The other key benefit of using open-source products is that widely used open-source
systems are very reliable. They have a large population of users who are willing to
fix problems themselves rather than report these problems to the developer and wait
for a new release of the system. Bugs are discovered and repaired more quickly than
is usually possible with proprietary software.

For a company involved in software development, there are two open-source
issues that have to be considered:

1. Should the product that is being developed make use of open-source components?

2. Should an open-source approach be used for its own software development?

The answers to these questions depend on the type of software that is being devel-
oped and the background and experience of the development team.

If you are developing a software product for sale, then time to market and reduced
costs are critical. If you are developing software in a domain in which there are high-quality
open-source systems available, you can save time and money by using these systems.
However, if you are developing software to a specific set of organizational require-
ments, then using open-source components may not be an option. You may have to
integrate your software with existing systems that are incompatible with available
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open-source systems. Even then, however, it could be quicker and cheaper to modify
the open-source system rather than redevelop the functionality that you need.

Many software product companies are now using an open-source approach to devel-
opment, especially for specialized systems. Their business model is not reliant on selling
a software product but rather on selling support for that product. They believe that
involving the open-source community will allow software to be developed more cheaply
and more quickly and will create a community of users for the software.

Some companies believe that adopting an open-source approach will reveal con-
fidential business knowledge to their competitors and so are reluctant to adopt this
development model. However, if you are working in a small company and you open
source your software, this may reassure customers that they will be able to support
the software if your company goes out of business.

Publishing the source code of a system does not mean that people from the wider
community will necessarily help with its development. Most successful open-source
products have been platform products rather than application systems. There are a
limited number of developers who might be interested in specialized application sys-
tems. Making a software system open source does not guarantee community involve-
ment. There are thousands of open-source projects on Sourceforge and GitHub that
have only a handful of downloads. However, if users of your software have concerns
about its availability in future, making the software open source means that they can
take their own copy and so be reassured that they will not lose access to it.

Open-source licensing

Although a fundamental principle of open-source development is that source code should
be freely available, this does not mean that anyone can do as they wish with that code.
Legally, the developer of the code (either a company or an individual) owns the code.
They can place restrictions on how it is used by including legally binding conditions in an
open-source software license (St. Laurent 2004). Some open-source developers believe
that if an open-source component is used to develop a new system, then that system
should also be open source. Others are willing to allow their code to be used without this
restriction. The developed systems may be proprietary and sold as closed-source systems.

Most open-source licenses (Chapman 2010) are variants of one of three
general models:

1. The GNU General Public License (GPL). This is a so-called reciprocal license
that simplistically means that if you use open-source software that is licensed
under the GPL license, then you must make that software open source.

2. The GNU Lesser General Public License (LGPL). This is a variant of the GPL
license where you can write components that link to open-source code without
having to publish the source of these components. However, if you change the
licensed component, then you must publish this as open source.

3. The Berkley Standard Distribution (BSD) License. This is a nonreciprocal license,
which means you are not obliged to re-publish any changes or modifications made to
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open-source code. You can include the code in proprietary systems that are sold. If
you use open-source components, you must acknowledge the original creator of
the code. The MIT license is a variant of the BSD license with similar conditions.

Licensing issues are important because if you use open-source software as part of
a software product, then you may be obliged by the terms of the license to make your
own product open source. If you are trying to sell your software, you may wish to
keep it secret. This means that you may wish to avoid using GPL-licensed open-
source software in its development.

If you are building software that runs on an open-source platform but that does
not reuse open-source components, then licenses are not a problem. However, if
you embed open-source software in your software, you need processes and data-
bases to keep track of what’s been used and their license conditions. Bayersdorfer
(Bayersdorfer 2007) suggests that companies managing projects that use open
source should:

1. Establish a system for maintaining information about open-source components
that are downloaded and used. You have to keep a copy of the license for each
component that was valid at the time the component was used. Licenses may
change, so you need to know the conditions that you have agreed to.

2. Be aware of the different types of licenses and understand how a component is
licensed before it is used. You may decide to use a component in one system but
not in another because you plan to use these systems in different ways.

3. Be aware of evolution pathways for components. You need to know a bit about
the open-source project where components are developed to understand how
they might change in future.

4. Educate people about open source. It’s not enough to have procedures in place
to ensure compliance with license conditions. You also need to educate devel-
opers about open source and open-source licensing.

5. Have auditing systems in place. Developers, under tight deadlines, might be
tempted to break the terms of a license. If possible, you should have software in
place to detect and stop this.

6. Participate in the open-source community. If you rely on open-source products,
you should participate in the community and help support their development.

The open-source approach is one of several business models for software. In this
model, companies release the source of their software and sell add-on services and
advice in association with this. They may also sell cloud-based software services—
an attractive option for users who do not have the expertise to manage their own
open-source system and also specialized versions of their system for particular cli-
ents. Open-source is therefore likely to increase in importance as a way of develop-
ing and distributing software.
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KEY POINTS

Software design and implementation are interleaved activities. The level of detail in the design
depends on the type of system being developed and whether you are using a plan-driven or
agile approach.

The process of object-oriented design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models, and document
the component interfaces.

A range of different models may be produced during an object-oriented design process. These
include static models (class models, generalization models, association models) and dynamic
models (sequence models, state machine models).

Component interfaces must be defined precisely so that other objects can use them. A UML
interface stereotype may be used to define interfaces.

When developing software, you should always consider the possibility of reusing existing soft-
ware, either as components, services, or complete systems.

Configuration management is the process of managing changes to an evolving software system.
It is essential when a team of people is cooperating to develop software.

Most software development is host-target development. You use an IDE on a host machine to
develop the software, which is transferred to a target machine for execution.

Open-source development involves making the source code of a system publicly available. This
means that many people can propose changes and improvements to the software.

FURTHER READING

Design Patterns: Elements of Reusable Object-oriented Software. This is the original software pat-
terns handbook that introduced software patterns to a wide community. (E. Gamma, R. Helm, R.
Johnson and J. Vlissides, Addison-Wesley, 1995).

Applying UML and Patterns: An Introduction to Object-oriented Analysis and Design and Iterative
Development, 3rd ed. Larman writes clearly on object-oriented design and also discusses use of the
UML; this is a good introduction to using patterns in the design process. Although it is more than 10
years old, it remains the best book on this topic that is available. (C. Larman, Prentice-Hall, 2004).

Producing Open Source Software: How to Run a Successful Free Software Project. This book is a
comprehensive guide to the background to open-source software, licensing issues, and the practi-
calities of running an open-source development project. (K. Fogel, O’Reilly Media Inc., 2008).

Further reading on software reuse is suggested in Chapter 15 and on configuration management in
Chapter 25.
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WEBSITE

PowerPoint slides for this chapter:
www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:
http://software-engineering-book.com/videos/implementation-and-evolution/
More information on the weather information system:

http://software-engineering-book.com/case-studies/wilderness-weather-station/

EXERCISES

7.1. Using the tabular notation shown in Figure 7.3, specify the weather station use cases for Report
status and Reconfigure. You should make reasonable assumptions about the functionality that
is required here.

7.2. Assume that the Mentcare system is being developed using an object-oriented approach. Draw
a use case diagram showing at least six possible use cases for this system.

7.3. Using the UML graphical notation for object classes, design the following object classes, identi-
fying attributes and operations. Use your own experience to decide on the attributes and oper-
ations that should be associated with these objects.

a messaging system on a mobile (cell) phone or tablet
a printer for a personal computer

a personal music system

a bank account

a library catalogue

7.4. A shape can be classified into 2-D and 3-D. Design an inheritance hierarchy that will include
different kinds of 2-D and 3-D shapes. Make sure you identify at least five other classes
of shapes.

7.5. Develop the design of the weather station to show the interaction between the data collection
subsystem and the instruments that collect weather data. Use sequence diagrams to show this
interaction.

7.6. ldentify possible objects in the following systems and develop an object-oriented design for
them. You may make any reasonable assumptions about the systems when deriving the design.

A group diary and time management system is intended to support the timetabling of meet-
ings and appointments across a group of co-workers. When an appointment is to be made
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that involves a number of people, the system finds a common slot in each of their diaries
and arranges the appointment for that time. If no common slots are available, it interacts
with the user to rearrange his or her personal diary to make room for the appointment.

Afilling station (gas station) is to be set up for fully automated operation. Drivers swipe their
credit card through a reader connected to the pump; the card is verified by communication
with a credit company computer, and a fuel limit is established. The driver may then take the
fuel required. When fuel delivery is complete and the pump hose is returned to its holster,
the driver’s credit card account is debited with the cost of the fuel taken. The credit card is
returned after debiting. If the card is invalid, the pump returns it before fuel is dispensed.

7.7. Draw a sequence diagram showing the interactions of objects in a group diary system when a
group of people are arranging a meeting.

7.8. Draw a UML state diagram showing the possible state changes in either the group diary or the
filling station system.

7.9. When code is integrated into a larger system, problems may surface. Explain how configura-
tion management can be useful when handling such problems.

7.10. A small company has developed a specialized software product that it configures specially
for each customer. New customers usually have specific requirements to be incorporated
into their system, and they pay for these to be developed and integrated with the product.
The software company has an opportunity to bid for a new contract, which would more than
double its customer base. The new customer wishes to have some involvement in the con-
figuration of the system. Explain why, in these circumstances, it might be a good idea for the
company owning the software to make it open source.
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Software testing

Objectives

The objective of this chapter is to introduce software testing and
software testing processes. When you have read the chapter, you will:

understand the stages of testing from testing during development
to acceptance testing by system customers;

have been introduced to techniques that help you choose test
cases that are geared to discovering program defects;

understand test-first development, where you design tests before
writing code and run these tests automatically;

know about three distinct types of testing—component testing,
system testing, and release testing;

understand the distinctions between development testing and user
testing.

Contents

8.1 Development testing
8.2 Test-driven development
8.3 Release testing

8.4 User testing
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Testing is intended to show that a program does what it is intended to do and to
discover program defects before it is put into use. When you test software, you exe-
cute a program using artificial data. You check the results of the test run for errors,
anomalies, or information about the program’s non-functional attributes.

When you test software, you are trying to do two things:

1. Demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the requirements document. For generic software
products, it means that there should be tests for all of the system features that
will be included in the product release. You may also test combinations of fea-
tures to check for unwanted interactions between them.

2. Find inputs or input sequences where the behavior of the software is incorrect,
undesirable, or does not conform to its specification. These are caused by defects
(bugs) in the software. When you test software to find defects, you are trying to
root out undesirable system behavior such as system crashes, unwanted interac-
tions with other systems, incorrect computations, and data corruption.

The first of these is validation testing, where you expect the system to perform
correctly using a set of test cases that reflect the system’s expected use. The second
is defect testing, where the test cases are designed to expose defects. The test cases in
defect testing can be deliberately obscure and need not reflect how the system is
normally used. Of course, there is no definite boundary between these two approaches
to testing. During validation testing, you will find defects in the system; during
defect testing, some of the tests will show that the program meets its requirements.

Figure 8.1 shows the differences between validation testing and defect testing. Think
of the system being tested as a black box. The system accepts inputs from some input
set | and generates outputs in an output set O. Some of the outputs will be erroneous.
These are the outputs in set O, that are generated by the system in response to inputs in
the set |. The priority in defect testing is to find those inputs in the set |, because these
reveal problems with the system. Validation testing involves testing with correct inputs
that are outside I.. These stimulate the system to generate the expected correct outputs.

Testing cannot demonstrate that the software is free of defects or that it will behave
as specified in every circumstance. It is always possible that a test you have overlooked
could discover further problems with the system. As Edsger Dijkstra, an early con-
tributor to the development of software engineering, eloquently stated (Dijkstra 1972):

“Testing can only show the presence of errors, not their absencet”

Testing is part of a broader process of software verification and validation (V & V).
Verification and validation are not the same thing, although they are often confused.
Barry Boehm, a pioneer of software engineering, succinctly expressed the difference
between them (Boehm 1979):

Dijkstra, E. W. 1972. “The Humble Programmer.” Comm. ACM 15 (10): 859—66. doi:10.1145/
355604.361591
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Figure 8.1 An input-
output model of
program testing
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m Validation: Are we building the right product?

m Verification: Are we building the product right?

Verification and validation processes are concerned with checking that software
being developed meets its specification and delivers the functionality expected by
the people paying for the software. These checking processes start as soon as require-
ments become available and continue through all stages of the development process.

Software verification is the process of checking that the software meets its stated
functional and non-functional requirements. Validation is a more general process.
The aim of software validation is to ensure that the software meets the customer’s
expectations. It goes beyond checking conformance with the specification to demon-
strating that the software does what the customer expects it to do. Validation is
essential because, as I discussed in Chapter 4, statements of requirements do not
always reflect the real wishes or needs of system customers and users.

The goal of verification and validation processes is to establish confidence that
the software system is “fit for purpose.” This means that the system must be good
enough for its intended use. The level of required confidence depends on the sys-
tem’s purpose, the expectations of the system users, and the current marketing
environment for the system:

1. Software purpose The more critical the software, the more important it is that it
is reliable. For example, the level of confidence required for software used to
control a safety-critical system is much higher than that required for a demon-
strator system that prototypes new product ideas.

2. User expectations Because of their previous experiences with buggy, unreliable
software, users sometimes have low expectations of software quality. They are
not surprised when their software fails. When a new system is installed, users
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Figure 8.2 Inspections
and testing
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may tolerate failures because the benefits of use outweigh the costs of failure
recovery. However, as a software product becomes more established, users
expect it to become more reliable. Consequently, more thorough testing of later
versions of the system may be required.

Marketing environment When a software company brings a system to market, it
must take into account competing products, the price that customers are willing
to pay for a system, and the required schedule for delivering that system. In a
competitive environment, the company may decide to release a program before
it has been fully tested and debugged because it wants to be the first into the
market. If a software product or app is very cheap, users may be willing to toler-
ate a lower level of reliability.

As well as software testing, the verification and validation process may involve

software inspections and reviews. Inspections and reviews analyze and check the
system requirements, design models, the program source code, and even proposed
system tests. These are “static” V & V techniques in which you don’t need to execute
the software to verify it. Figure 8.2 shows that software inspections and testing sup-
port V & V at different stages in the software process. The arrows indicate the stages
in the process where the techniques may be used.

Inspections mostly focus on the source code of a system, but any readable repre-

sentation of the software, such as its requirements or a design model, can be
inspected. When you inspect a system, you use knowledge of the system, its application
domain, and the programming or modeling language to discover errors.

Software inspection has three advantages over testing:

During testing, errors can mask (hide) other errors. When an error leads to
unexpected outputs, you can never be sure if later output anomalies are due to
a new error or are side effects of the original error. Because inspection doesn’t
involve executing the system, you don’t have to worry about interactions
between errors. Consequently, a single inspection session can discover many
errors in a system.
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3. As well as searching for program defects, an inspection can also consider
broader quality attributes of a program, such as compliance with standards,
portability, and maintainability. You can look for inefficiencies, inappropriate
algorithms, and poor programming style that could make the system difficult to
maintain and update.

Program inspections are an old idea, and several studies and experiments have
shown that inspections are more effective for defect discovery than program testing.
Fagan (Fagan 1976) reported that more than 60% of the errors in a program can be
detected using informal program inspections. In the Cleanroom process (Prowell et
al. 1999), it is claimed that more than 90% of defects can be discovered in program
inspections.

However, inspections cannot replace software testing. Inspections are not good
for discovering defects that arise because of unexpected interactions between differ-
ent parts of a program, timing problems, or problems with system performance. In
small companies or development groups, it can be difficult and expensive to put
together a separate inspection team as all potential team members may also be
developers of the software.

I discuss reviews and inspections in more detail in Chapter 24 (Quality
Management). Static analysis, where the source text of a program is automatically
analyzed to discover anomalies, is explained in Chapter 12. In this chapter, I focus
on testing and testing processes.

Figure 8.3 is an abstract model of the traditional testing process, as used in plan-
driven development. Test cases are specifications of the inputs to the test and the
expected output from the system (the test results), plus a statement of what is being
tested. Test data are the inputs that have been devised to test a system. Test data can
sometimes be generated automatically, but automatic test case generation is impos-
sible. People who understand what the system is supposed to do must be involved to
specify the expected test results. However, test execution can be automated. The test
results are automatically compared with the predicted results, so there is no need for
a person to look for errors and anomalies in the test run.
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@ Test planning

Test planning is concerned with scheduling and resourcing all of the activities in the testing process. It involves
defining the testing process, taking into account the people and the time available. Usually, a test plan will be
created that defines what is to be tested, the predicted testing schedule, and how tests will be recorded. For
critical systems, the test plan may also include details of the tests to be run on the software.

http://software-engineering-book.com/web/test-planning/

Typically, a commercial software system has to go through three stages of testing:

1. Development testing, where the system is tested during development to discover
bugs and defects. System designers and programmers are likely to be involved
in the testing process.

2. Release testing, where a separate testing team tests a complete version of the
system before it is released to users. The aim of release testing is to check that
the system meets the requirements of the system stakeholders.

3. User testing, where users or potential users of a system test the system in their
own environment. For software products, the “user” may be an internal market-
ing group that decides if the software can be marketed, released and sold.
Acceptance testing is one type of user testing where the customer formally tests
a system to decide if it should be accepted from the system supplier or if further
development is required.

In practice, the testing process usually involves a mixture of manual and auto-
mated testing. In manual testing, a tester runs the program with some test data and
compares the results to their expectations. They note and report discrepancies to the
program developers. In automated testing, the tests are encoded in a program that is
run each time the system under development is to be tested. This is faster than man-
ual testing, especially when it involves regression testing—re-running previous tests
to check that changes to the program have not introduced new bugs.

Unfortunately, testing can never be completely automated as automated tests can
only check that a program does what it is supposed to do. It is practically impossible
to use automated testing to test systems that depend on how things look (e.g., a graph-
ical user interface), or to test that a program does not have unanticipated side effects.

I XU Development testing

Development testing includes all testing activities that are carried out by the team
developing the system. The tester of the software is usually the programmer who
developed that software. Some development processes use programmer/tester pairs
(Cusamano and Selby 1998) where each programmer has an associated tester who
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@ Debugging

Debugging is the process of fixing errors and problems that have been discovered by testing. Using information
from the program tests, debuggers use their knowledge of the programming language and the intended out-
come of the test to locate and repair the program error. When you are debugging a program, you usually use
interactive tools that provide extra information about program execution.

8.1.1

http://software-engineering-book.com/web/debugging/

develops tests and assists with the testing process. For critical systems, a more for-
mal process may be used, with a separate testing group within the development team.
This group is responsible for developing tests and maintaining detailed records of
test results.

There are three stages of development testing:

1. Unit testing, where individual program units or object classes are tested. Unit
testing should focus on testing the functionality of objects or methods.

2. Component testing, where several individual units are integrated to create com-
posite components. Component testing should focus on testing the component
interfaces that provide access to the component functions.

3. System testing, where some or all of the components in a system are integrated
and the system is tested as a whole. System testing should focus on testing com-
ponent interactions.

Development testing is primarily a defect testing process, where the aim of test-
ing is to discover bugs in the software. It is therefore usually interleaved with
debugging—the process of locating problems with the code and changing the pro-
gram to fix these problems.

Unit testing

Unit testing is the process of testing program components, such as methods or object
classes. Individual functions or methods are the simplest type of component. Your
tests should be calls to these routines with different input parameters. You can use
the approaches to test-case design discussed in Section 8.1.2 to design the function
or method tests.

When you are testing object classes, you should design your tests to provide cov-
erage of all of the features of the object. This means that you should test all opera-
tions associated with the object; set and check the value of all attributes associated
with the object; and put the object into all possible states. This means that you should
simulate all events that cause a state change.

Consider, for example, the weather station object from the example that I discussed
in Chapter 7. The attributes and operations of this object are shown in Figure 8.4.
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Figure 8.4 The weather
station object interface

identifier

reportWeather ()
reportStatus ()

powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

It has a single attribute, which is its identifier. This is a constant that is set when the
weather station is installed. You therefore only need a test that checks if it has been
properly set up. You need to define test cases for all of the methods associated with the
object such as reportWeather and reportStatus. Ideally, you should test methods in
isolation, but, in some cases, test sequences are necessary. For example, to test the
method that shuts down the weather station instruments (shutdown), you need to have
executed the restart method.

Generalization or inheritance makes object class testing more complicated. You
can’t simply test an operation in the class where it is defined and assume that it will
work as expected in all of the subclasses that inherit the operation. The operation that
is inherited may make assumptions about other operations and attributes. These
assumptions may not be valid in some subclasses that inherit the operation. You
therefore have to test the inherited operation everywhere that it is used.

To test the states of the weather station, you can use a state model as discussed in
Chapter 7 (Figure 7.8). Using this model, you identify sequences of state transitions
that have to be tested and define event sequences to force these transitions. In princi-
ple, you should test every possible state transition sequence, although in practice this
may be too expensive. Examples of state sequences that should be tested in the
weather station include:

Shutdown — Running — Shutdown
Configuring — Running — Testing — Transmitting — Running
Running — Collecting — Running — Summarizing — Transmitting — Running

Whenever possible, you should automate unit testing. In automated unit testing, you
make use of a test automation framework, such as JUnit (Tahchiev et al. 2010) to write
and run your program tests. Unit testing frameworks provide generic test classes that
you extend to create specific test cases. They can then run all of the tests that you have
implemented and report, often through some graphical unit interface (GUI), on the suc-
cess or otherwise of the tests. An entire test suite can often be run in a few seconds, so it
is possible to execute all tests every time you make a change to the program.

An automated test has three parts:

1. A setup part, where you initialize the system with the test case, namely, the
inputs and expected outputs.
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2. A call part, where you call the object or method to be tested.

3. An assertion part, where you compare the result of the call with the expected
result. If the assertion evaluates to true, the test has been successful; if false,
then it has failed.

Sometimes, the object that you are testing has dependencies on other objects that
may not have been implemented or whose use slows down the testing process. For
example, if an object calls a database, this may involve a slow setup process before
it can be used. In such cases, you may decide to use mock objects.

Mock objects are objects with the same interface as the external objects being
used that simulate its functionality. For example, a mock object simulating a data-
base may have only a few data items that are organized in an array. They can be
accessed quickly, without the overheads of calling a database and accessing disks.
Similarly, mock objects can be used to simulate abnormal operations or rare
events. For example, if your system is intended to take action at certain times of
day, your mock object can simply return those times, irrespective of the actual
clock time.

Choosing unit test cases

Testing is expensive and time consuming, so it is important that you choose effective
unit test cases. Effectiveness, in this case, means two things:

1. The test cases should show that, when used as expected, the component that you
are testing does what it is supposed to do.

2. [If there are defects in the component, these should be revealed by test cases.

You should therefore design two kinds of test case. The first of these should
reflect normal operation of a program and should show that the component works.
For example, if you are testing a component that creates and initializes a new patient
record, then your test case should show that the record exists in a database and that
its fields have been set as specified. The other kind of test case should be based on
testing experience of where common problems arise. It should use abnormal inputs
to check that these are properly processed and do not crash the component.

Two strategies that can be effective in helping you choose test cases are:

1. Partition testing, where you identify groups of inputs that have common charac-
teristics and should be processed in the same way. You should choose tests from
within each of these groups.

2. Guideline-based testing, where you use testing guidelines to choose test cases.
These guidelines reflect previous experience of the kinds of errors that program-
mers often make when developing components.
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Figure 8.5 Equivalence
partitioning
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The input data and output results of a program can be thought of as members of
sets with common characteristics. Examples of these sets are positive numbers, negative
numbers, and menu selections. Programs normally behave in a comparable way for
all members of a set. That is, if you test a program that does a computation and
requires two positive numbers, then you would expect the program to behave in the
same way for all positive numbers.

Because of this equivalent behavior, these classes are sometimes called equiva-
lence partitions or domains (Bezier 1990). One systematic approach to test-case
design is based on identifying all input and output partitions for a system or compo-
nent. Test cases are designed so that the inputs or outputs lie within these partitions.
Partition testing can be used to design test cases for both systems and components.

In Figure 8.5, the large shaded ellipse on the left represents the set of all possible
inputs to the program that is being tested. The smaller unshaded ellipses represent
equivalence partitions. A program being tested should process all of the members of
an input equivalence partition in the same way.

Output equivalence partitions are partitions within which all of the outputs have
something in common. Sometimes there is a 1:1 mapping between input and output
equivalence partitions. However, this is not always the case; you may need to define
a separate input equivalence partition, where the only common characteristic of the
inputs is that they generate outputs within the same output partition. The shaded area
in the left ellipse represents inputs that are invalid. The shaded area in the right
ellipse represents exceptions that may occur, that is, responses to invalid inputs.

Once you have identified a set of partitions, you choose test cases from each of
these partitions. A good rule of thumb for test-case selection is to choose test cases
on the boundaries of the partitions, plus cases close to the midpoint of the partition.
The reason for this is that designers and programmers tend to consider typical values
of inputs when developing a system. You test these by choosing the midpoint of the
partition. Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) and so are sometimes overlooked by developers.
Program failures often occur when processing these atypical values.
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You identify partitions by using the program specification or user documentation and
from experience where you predict the classes of input value that are likely to detect
errors. For example, say a program specification states that the program accepts four to
eight inputs which are five-digit integers greater than 10,000. You use this information to
identify the input partitions and possible test input values. These are shown in Figure 8.6.

When you use the specification of a system to identify equivalence partitions, this
is called black-box testing. You don’t need any knowledge of how the system works.
It is sometimes useful to supplement the black-box tests with “white-box testing,”
where you look at the code of the program to find other possible tests. For example,
your code may include exceptions to handle incorrect inputs. You can use this
knowledge to identify “exception partitions”’—different ranges where the same
exception handling should be applied.

Equivalence partitioning is an effective approach to testing because it helps
account for errors that programmers often make when processing inputs at the edges
of partitions. You can also use testing guidelines to help choose test cases. Guidelines
encapsulate knowledge of what kinds of test cases are effective for discovering
errors. For example, when you are testing programs with sequences, arrays, or lists,
guidelines that could help reveal defects include:

1. Test software with sequences that have only a single value. Programmers natu-
rally think of sequences as made up of several values, and sometimes they
embed this assumption in their programs. Consequently, if presented with a
single-value sequence, a program may not work properly.

2. Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3. Derive tests so that the first, middle, and last elements of the sequence are
accessed. This approach reveals problems at partition boundaries.
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@ Path testing

Path testing is a testing strategy that aims to exercise every independent execution path through a component
or program. If every independent path is executed, then all statements in the component must have been exe-
cuted at least once. All conditional statements are tested for both true and false cases. In an object-oriented
development process, path testing may be used to test the methods associated with objects.

8.1.3

http://software-engineering-book.com/web/path-testing/

Whittaker’s book (Whittaker 2009) includes many examples of guidelines that
can be used in test-case design. Some of the most general guidelines that he suggests are:

Choose inputs that force the system to generate all error messages:

Design inputs that cause input buffers to overflow.

Repeat the same input or series of inputs numerous times.
m Force invalid outputs to be generated.

m Force computation results to be too large or too small.
As you gain experience with testing, you can develop your own guidelines about

how to choose effective test cases. I give more examples of testing guidelines in the
next section.

Component testing

Software components are often made up of several interacting objects. For example,
in the weather station system, the reconfiguration component includes objects that
deal with each aspect of the reconfiguration. You access the functionality of these
objects through component interfaces (see Chapter 7). Testing composite components
should therefore focus on showing that the component interface or interfaces behave
according to its specification. You can assume that unit tests on the individual objects
within the component have been completed.

Figure 8.7 illustrates the idea of component interface testing. Assume that compo-
nents A, B, and C have been integrated to create a larger component or subsystem.
The test cases are not applied to the individual components but rather to the interface
of the composite component created by combining these components. Interface errors
in the composite component may not be detectable by testing the individual objects
because these errors result from interactions between the objects in the component.

There are different types of interface between program components and, conse-
quently, different types of interface error that can occur:

1. Parameter interfaces These are interfaces in which data or sometimes function
references are passed from one component to another. Methods in an object
have a parameter interface.
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2. Shared memory interfaces These are interfaces in which a block of memory is
shared between components. Data is placed in the memory by one subsystem
and retrieved from there by other subsystems. This type of interface is used in
embedded systems, where sensors create data that is retrieved and processed by
other system components.

3. Procedural interfaces These are interfaces in which one component encapsu-
lates a set of procedures that can be called by other components. Objects and
reusable components have this form of interface.

4. Message passing interfaces These are interfaces in which one component
requests a service from another component by passing a message to it. A return
message includes the results of executing the service. Some object-oriented sys-
tems have this form of interface, as do client—server systems.

Interface errors are one of the most common forms of error in complex systems
(Lutz 1993). These errors fall into three classes:

m [nterface misuse A calling component calls some other component and makes an
error in the use of its interface. This type of error is common in parameter inter-
faces, where parameters may be of the wrong type or be passed in the wrong
order, or the wrong number of parameters may be passed.

m [nterface misunderstanding A calling component misunderstands the specification
of the interface of the called component and makes assumptions about its behavior.
The called component does not behave as expected, which then causes unexpected
behavior in the calling component. For example, a binary search method may be
called with a parameter that is an unordered array. The search would then fail.

m Timing errors These occur in real-time systems that use a shared memory or a
message-passing interface. The producer of data and the consumer of data may
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operate at different speeds. Unless particular care is taken in the interface design,
the consumer can access out-of-date information because the producer of the
information has not updated the shared interface information.

Testing for interface defects is difficult because some interface faults may only
manifest themselves under unusual conditions. For example, say an object imple-
ments a queue as a fixed-length data structure. A calling object may assume that the
queue is implemented as an infinite data structure, and so it does not check for queue
overflow when an item is entered.

This condition can only be detected during testing by designing a sequence of test
cases that force the queue to overflow. The tests should check how calling objects
handle that overflow. However, as this is a rare condition, testers may think that this
isn’t worth checking when writing the test set for the queue object.

A further problem may arise because of interactions between faults in different
modules or objects. Faults in one object may only be detected when some other
object behaves in an unexpected way. Say an object calls another object to receive
some service and the calling object assumes that the response is correct. If the called
service is faulty in some way, the returned value may be valid but incorrect. The
problem is therefore not immediately detectable but only becomes obvious when
some later computation, using the returned value, goes wrong.

Some general guidelines for interface testing are:

1. Examine the code to be tested and identify each call to an external component.
Design a set of tests in which the values of the parameters to the external com-
ponents are at the extreme ends of their ranges. These extreme values are most
likely to reveal interface inconsistencies.

2. Where pointers are passed across an interface, always test the interface with null
pointer parameters.

3. Where a component is called through a procedural interface, design tests that
deliberately cause the component to fail. Differing failure assumptions are one
of the most common specification misunderstandings.

4. Use stress testing in message passing systems. This means that you should
design tests that generate many more messages than are likely to occur in prac-
tice. This is an effective way of revealing timing problems.

5. Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may reveal
implicit assumptions made by the programmer about the order in which the
shared data is produced and consumed.

Sometimes it is better to use inspections and reviews rather than testing to look
for interface errors. Inspections can concentrate on component interfaces and ques-
tions about the assumed interface behavior asked during the inspection process.
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8.1.4

System testing

System testing during development involves integrating components to create a ver-
sion of the system and then testing the integrated system. System testing checks that
components are compatible, interact correctly, and transfer the right data at the right
time across their interfaces. It obviously overlaps with component testing, but there
are two important differences:

1. During system testing, reusable components that have been separately developed
and off-the-shelf systems may be integrated with newly developed components.
The complete system is then tested.

2. Components developed by different team members or subteams may be integrated
at this stage. System testing is a collective rather than an individual process. In
some companies, system testing may involve a separate testing team with no
involvement from designers and programmers.

All systems have emergent behavior. This means that some system functionality
and characteristics only become obvious when you put the components together.
This may be planned emergent behavior, which has to be tested. For example, you
may integrate an authentication component with a component that updates the sys-
tem database. You then have a system feature that restricts information updating to
authorized users. Sometimes, however, the emergent behavior is unplanned and
unwanted. You have to develop tests that check that the system is only doing what it
is supposed to do.

System testing should focus on testing the interactions between the components
and objects that make up a system. You may also test reusable components or sys-
tems to check that they work as expected when they are integrated with new compo-
nents. This interaction testing should discover those component bugs that are only
revealed when a component is used by other components in the system. Interaction
testing also helps find misunderstandings, made by component developers, about
other components in the system.

Because of its focus on interactions, use case-based testing is an effective
approach to system testing. Several components or objects normally implement each
use case in the system. Testing the use case forces these interactions to occur. If you
have developed a sequence diagram to model the use case implementation, you can
see the objects or components that are involved in the interaction.

In the wilderness weather station example, the system software reports summa-
rized weather data to a remote computeras described in Figure 7.3. Figure 8.8 shows
the sequence of operations in the weather station when it responds to a request to col-
lect data for the mapping system. You can use this diagram to identify operations that
will be tested and to help design the test cases to execute the tests. Therefore issuing
a request for a report will result in the execution of the following thread of methods:

SatComms:request — WeatherStation:reportWeather - Commslink:Get(summary)
— WeatherData:summarize
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The sequence diagram helps you design the specific test cases that you need, as it
shows what inputs are required and what outputs are created:

1. An input of a request for a report should have an associated acknowledgment.
A report should ultimately be returned from the request. During testing, you
should create summarized data that can be used to check that the report is cor-
rectly organized.

2. An input request for a report to WeatherStation results in a summarized report
being generated. You can test this in isolation by creating raw data correspond-
ing to the summary that you have prepared for the test of SatComms and check-
ing that the WeatherStation object correctly produces this summary. This raw
data is also used to test the WeatherData object.

Of course, I have simplified the sequence diagram in Figure 8.8 so that it does not
show exceptions. A complete use case/scenario test must take these exceptions into
account and ensure that they are correctly handled.

For most systems, it is difficult to know how much system testing is essential and
when you should stop testing. Exhaustive testing, where every possible program
execution sequence is tested, is impossible. Testing, therefore, has to be based on a
subset of possible test cases. Ideally, software companies should have policies for
choosing this subset. These policies might be based on general testing policies, such
as a policy that all program statements should be executed at least once. Alternatively,
they may be based on experience of system usage and focus on testing the features of
the operational system. For example:
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@ Incremental integration and testing

System testing involves integrating different components, then testing the integrated system that you have
created. You should always use an incremental approach to integration and testing where you integrate a
component, test the system, integrate another component, test again, and so on. If problems occur, they are
probably due to interactions with the most recently integrated component.

Incremental integration and testing is fundamental to agile methods, where regression tests are run every time
a new increment is integrated.

http://software-engineering-book.com/web/integration/

1. All system functions that are accessed through menus should be tested.

2. Combinations of functions (e.g., text formatting) that are accessed through the
same menu must be tested.

3. Where user input is provided, all functions must be tested with both correct and
incorrect input.

It is clear from experience with major software products such as word processors
or spreadsheets that similar guidelines are normally used during product testing.
When features of the software are used in isolation, they normally work. Problems
arise, as Whittaker explains (Whittaker 2009), when combinations of less com-
monly used features have not been tested together. He gives the example of how, in
a commonly used word processor, using footnotes with multicolumn layout causes
incorrect layout of the text.

Automated system testing is usually more difficult than automated unit or compo-
nent testing. Automated unit testing relies on predicting the outputs and then encoding
these predictions in a program. The prediction is then compared with the result.
However, the point of implementing a system may be to generate outputs that are
large or cannot be easily predicted. You may be able to examine an output and check
its credibility without necessarily being able to create it in advance.

I ¥ N Test-driven development

Test-driven development (TDD) is an approach to program development in which
you interleave testing and code development (Beck 2002; Jeffries and Melnik 2007).
You develop the code incrementally, along with a set of tests for that increment. You
don’t start working on the next increment until the code that you have developed
passes all of its tests. Test-driven development was introduced as part of the XP agile
development method. However, it has now gained mainstream acceptance and may
be used in both agile and plan-based processes.
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The fundamental TDD process is shown in Figure 8.9. The steps in the process
are as follows:

1. You start by identifying the increment of functionality that is required. This
should normally be small and implementable in a few lines of code.

2. You write a test for this functionality and implement it as an automated test.
This means that the test can be executed and will report whether or not it has
passed or failed.

3. You then run the test, along with all other tests that have been implemented.
Initially, you have not implemented the functionality so the new test will fail.
This is deliberate as it shows that the test adds something to the test set.

4. You then implement the functionality and re-run the test. This may involve
refactoring existing code to improve it and add new code to what’s already there.

5. Once all tests run successfully, you move on to implementing the next chunk of
functionality.

An automated testing environment, such as the JUnit environment that supports
Java program testing (Tahchiev et al. 2010) is essential for TDD. As the code is
developed in very small increments, you have to be able to run every test each time
that you add functionality or refactor the program. Therefore, the tests are embedded
in a separate program that runs the tests and invokes the system that is being tested.
Using this approach, you can run hundreds of separate tests in a few seconds.

Test-driven development helps programmers clarify their ideas of what a code
segment is actually supposed to do. To write a test, you need to understand what is
intended, as this understanding makes it easier to write the required code. Of course,
if you have incomplete knowledge or understanding, then TDD won’t help.

If you don’t know enough to write the tests, you won’t develop the required code.
For example, if your computation involves division, you should check that you are
not dividing the numbers by zero. If you forget to write a test for this, then the check-
ing code will never be included in the program.

As well as better problem understanding, other benefits of test-driven development are:

1. Code coverage In principle, every code segment that you write should have at
least one associated test. Therefore, you can be confident that all of the code in
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the system has actually been executed. Code is tested as it is written, so defects
are discovered early in the development process.

2. Regression testing A test suite is developed incrementally as a program is devel-
oped. You can always run regression tests to check that changes to the program
have not introduced new bugs.

3. Simplified debugging When a test fails, it should be obvious where the prob-
lem lies. The newly written code needs to be checked and modified. You do
not need to use debugging tools to locate the problem. Reports of the use of
TDD suggest that it is hardly ever necessary to use an automated debugger in
test-driven development (Martin 2007).

4.  System documentation The tests themselves act as a form of documentation that
describe what the code should be doing. Reading the tests can make it easier to
understand the code.

One of the most important benefits of TDD is that it reduces the costs of regres-
sion testing. Regression testing involves running test sets that have successfully
executed after changes have been made to a system. The regression test checks that
these changes have not introduced new bugs into the system and that the new code
interacts as expected with the existing code. Regression testing is expensive and
sometimes impractical when a system is manually tested, as the costs in time and
effort are very high. You have to try to choose the most relevant tests to re-run and it
is easy to miss important tests.

Automated testing dramatically reduces the costs of regression testing. Existing
tests may be re-run quickly and cheaply. After making a change to a system in test-
first development, all existing tests must run successfully before any further func-
tionality is added. As a programmer, you can be confident that the new functionality
that you have added has not caused or revealed problems with existing code.

Test-driven development is of most value in new software development where
the functionality is either implemented in new code or by using components from
standard libraries. If you are reusing large code components or legacy systems, then
you need to write tests for these systems as a whole. You cannot easily decompose
them into separate testable elements. Incremental test-driven development is imprac-
tical. Test-driven development may also be ineffective with multithreaded systems.
The different threads may be interleaved at different times in different test runs, and
so may produce different results.

If you use TDD, you still need a system testing process to validate the system,
that is, to check that it meets the requirements of all of the system stakeholders.
System testing also tests performance, reliability, and checks that the system does
not do things that it shouldn’t do, such as produce unwanted outputs. Andrea (Andrea
2007) suggests how testing tools can be extended to integrate some aspects of sys-
tem testing with TDD.

Test-driven development is now a widely used and mainstream approach to soft-
ware testing. Most programmers who have adopted this approach are happy with it
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and find it a more productive way to develop software. It is also claimed that use of
TDD encourages better structuring of a program and improved code quality.
However, experiments to verify this claim have been inconclusive.

I XY Release testing

8.3.1

Release testing is the process of testing a particular release of a system that is intended
for use outside of the development team. Normally, the system release is for customers
and users. In a complex project, however, the release could be for other teams that are
developing related systems. For software products, the release could be for product
management who then prepare it for sale.

There are two important distinctions between release testing and system testing
during the development process:

1. The system development, team should not be responsible for release testing.

2. Release testing is a process of validation checking to ensure that a system meets
its requirements and is good enough for use by system customers. System test-
ing by the development team should focus on discovering bugs in the system
(defect testing).

The primary goal of the release testing process is to convince the supplier of the
system that it is good enough for use. If so, it can be released as a product or deliv-
ered to the customer. Release testing, therefore, has to show that the system delivers
its specified functionality, performance, and dependability, and that it does not fail
during normal use.

Release testing is usually a black-box testing process whereby tests are derived
from the system specification. The system is treated as a black box whose behavior
can only be determined by studying its inputs and the related outputs. Another name
for this is functional testing, so-called because the tester is only concerned with
functionality and not the implementation of the software.

Requirements-based testing

A general principle of good requirements engineering practice is that require-
ments should be testable. That is, the requirement should be written so that a test
can be designed for that requirement. A tester can then check that the require-
ment has been satisfied. Requirements-based testing, therefore, is a systematic
approach to test-case design where you consider each requirement and derive a
set of tests for it. Requirements-based testing is validation rather than defect
testing—you are trying to demonstrate that the system has properly implemented
its requirements.
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8.3.2

For example, consider the following Mentcare system requirements that are con-
cerned with checking for drug allergies:

If a patient is known to be allergic to any particular medication, then prescrip-
tion of that medication shall result in a warning message being issued to the
System user.

If a prescriber chooses to ignore an allergy warning, he or she shall provide
a reason why this has been ignored.

To check if these requirements have been satisfied, you may need to develop sev-
eral related tests:

1. Set up a patient record with no known allergies. Prescribe medication for aller-
gies that are known to exist. Check that a warning message is not issued by the
system.

2. Set up a patient record with a known allergy. Prescribe the medication that the
patient is allergic to and check that the warning is issued by the system.

3. Set up a patient record in which allergies to two or more drugs are recorded.
Prescribe both of these drugs separately and check that the correct warning for
each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that two warnings are
correctly issued.

5. Prescribe a drug that issues a warning and overrule that warning. Check that the
system requires the user to provide information explaining why the warning was
overruled.

You can see from this list that testing a requirement does not mean just writing a
single test. You normally have to write several tests to ensure that you have coverage
of the requirement. You should also keep traceability records of your requirements-
based testing, which link the tests to the specific requirements that you have tested.

Scenario testing

Scenario testing is an approach to release testing whereby you devise typical sce-
narios of use and use these scenarios to develop test cases for the system. A scenario
is a story that describes one way in which the system might be used. Scenarios
should be realistic, and real system users should be able to relate to them. If you have
used scenarios or user stories as part of the requirements engineering process
(described in Chapter 4), then you may be able to reuse them as testing scenarios.
In a short paper on scenario testing, Kaner (Kaner 2003) suggests that a scenario
test should be a narrative story that is credible and fairly complex. It should moti-
vate stakeholders; that is, they should relate to the scenario and believe that it is
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George is a nurse who specializes in mental health care. One of his responsibilities is to visit patients at home
to check that their treatment is effective and that they are not suffering from medication side effects.

On a day for home visits, George logs into the Mentcare system and uses it to print his schedule of home
visits for that day, along with summary information about the patients to be visited. He requests that the records
for these patients be downloaded to his laptop. He is prompted for his key phrase to encrypt the records on the
laptop.

One of the patients whom he visits is Jim, who is being treated with medication for depression. Jim feels
that the medication is helping him but believes that it has the side effect of keeping him awake at night. George
looks up Jim's record and is prompted for his key phrase to decrypt the record. He checks the drug prescribed
and queries its side effects. Sleeplessness is a known side effect, so he notes the problem in Jim's record and
suggests that he visit the clinic to have his medication changed. Jim agrees, so George enters a prompt to call
him when he gets back to the clinic to make an appointment with a physician. George ends the consultation,
and the system re-encrypts Jim's record.

After finishing his consultations, George returns to the clinic and uploads the records of patients visited to
the database. The system generates a call list for George of those patients whom he has to contact for follow-up
information and make clinic appointments.

:tlg:lyr?o?-tm A user important that the system passes the test. He also suggests that it should be easy to

Mentcare system evaluate. If there are problems with the system, then the release testing team should
recognize them.
As an example of a possible scenario from the Mentcare system, Figure 8.10
describes one way that the system may be used on a home visit. This scenario tests a
number of features of the Mentcare system:

1. Authentication by logging on to the system.

Downloading and uploading of specified patient records to a laptop.
Home visit scheduling.

Encryption and decryption of patient records on a mobile device.
Record retrieval and modification.

Links with the drugs database that maintains side-effect information.

N vk wd

The system for call prompting.

If you are a release tester, you run through this scenario, playing the role of
George and observing how the system behaves in response to different inputs. As
George, you may make deliberate mistakes, such as inputting the wrong key phrase
to decode records. This checks the response of the system to errors. You should care-
fully note any problems that arise, including performance problems. If a system is
too slow, this will change the way that it is used. For example, if it takes too long to
encrypt a record, then users who are short of time may skip this stage. If they then
lose their laptop, an unauthorized person could then view the patient records.

When you use a scenario-based approach, you are normally testing several require-
ments within the same scenario. Therefore, as well as checking individual requirements,
you are also checking that combinations of requirements do not cause problems.
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8.3.3 Performance testing

Once a system has been completely integrated, it is possible to test for emergent
properties, such as performance and reliability. Performance tests have to be
designed to ensure that the system can process its intended load. This usually
involves running a series of tests where you increase the load until the system perfor-
mance becomes unacceptable.

As with other types of testing, performance testing is concerned both with dem-
onstrating that the system meets its requirements and discovering problems and
defects in the system. To test whether performance requirements are being achieved,
you may have to construct an operational profile. An operational profile (see Chapter 11)
is a set of tests that reflect the actual mix of work that will be handled by the system.
Therefore, if 90% of the transactions in a system are of type A, 5% of type B, and the
remainder of types C, D, and E, then you have to design the operational profile so
that the vast majority of tests are of type A. Otherwise, you will not get an accurate
test of the operational performance of the system.

This approach, of course, is not necessarily the best approach for defect testing.
Experience has shown that an effective way to discover defects is to design tests
around the limits of the system. In performance testing, this means stressing the sys-
tem by making demands that are outside the design limits of the software. This is
known as stress testing.

Say you are testing a transaction processing system that is designed to process up
to 300 transactions per second. You start by testing this system with fewer than
300 transactions per second. You then gradually increase the load on the system
beyond 300 transactions per second until it is well beyond the maximum design load
of the system and the system fails.

Stress testing helps you do two things:

1. Test the failure behavior of the system. Circumstances may arise through an
unexpected combination of events where the load placed on the system exceeds
the maximum anticipated load. In these circumstances, system failure should
not cause data corruption or unexpected loss of user services. Stress testing
checks that overloading the system causes it to “fail-soft” rather than collapse
under its load.

2. Reveal defects that only show up when the system is fully loaded. Although it can
be argued that these defects are unlikely to cause system failures in normal use, there
may be unusual combinations of circumstances that the stress testing replicates.

Stress testing is particularly relevant to distributed systems based on a network of
processors. These systems often exhibit severe degradation when they are heavily
loaded. The network becomes swamped with coordination data that the different
processes must exchange. The processes become slower and slower as they wait for
the required data from other processes. Stress testing helps you discover when the
degradation begins so that you can add checks to the system to reject transactions
beyond this point.
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User testing

User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing. This may involve formally testing a sys-
tem that has been commissioned from an external supplier. Alternatively, it may be
an informal process where users experiment with a new software product to see if
they like it and to check that it does what they need. User testing is essential, even
when comprehensive system and release testing have been carried out. Influences
from the user’s working environment can have a major effect on the reliability, per-
formance, usability, and robustness of a system.

It is practically impossible for a system developer to replicate the system’s work-
ing environment, as tests in the developer’s environment are inevitably artificial. For
example, a system that is intended for use in a hospital is used in a clinical environ-
ment where other things are going on, such as patient emergencies and conversations
with relatives. These all affect the use of a system, but developers cannot include
them in their testing environment.

There are three different types of user testing:

1. Alpha testing, where a selected group of software users work closely with the
development team to test early releases of the software.

2. Beta testing, where a release of the software is made available to a larger group
of users to allow them to experiment and to raise problems that they discover
with the system developers.

3. Acceptance testing, where customers test a system to decide whether or not it is ready
to be accepted from the system developers and deployed in the customer environment.

In alpha testing, users and developers work together to test a system as it is being
developed. This means that the users can identify problems and issues that are not
readily apparent to the development testing team. Developers can only really work
from the requirements, but these often do not reflect other factors that affect the
practical use of the software. Users can therefore provide information about practice
that helps with the design of more realistic tests.

Alpha testing is often used when developing software products or apps. Experienced
users of these products may be willing to get involved in the alpha testing process
because this gives them early information about new system features that they can
exploit. It also reduces the risk that unanticipated changes to the software will have
disruptive effects on their business. However, alpha testing may also be used when
custom software is being developed. Agile development methods advocate user
involvement in the development process, and that users should play a key role in
designing tests for the system.

Beta testing takes place when an early, sometimes unfinished, release of a software
system is made available to a larger group of customers and users for evaluation.
Beta testers may be a selected group of customers who are early adopters of the system.
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Alternatively, the software may be made publicly available for use by anyone who is
interested in experimenting with it.

Beta testing is mostly used for software products that are used in many different
settings. This is important as, unlike custom product developers, there is no way for
the product developer to limit the software’s operating environment. It is impossible
for product developers to know and replicate all the settings in which the software
product will be used. Beta testing is therefore used to discover interaction problems
between the software and features of its operational environment. Beta testing is also
a form of marketing. Customers learn about their system and what it can do for them.

Acceptance testing is an inherent part of custom systems development. Customers
test a system, using their own data, and decide if it should be accepted from the system
developer. Acceptance implies that final payment should be made for the software.

Figure 8.11 shows that here are six stages in the acceptance testing process:

1. Define acceptance criteria This stage should ideally take place early in the pro-
cess before the contract for the system is signed. The acceptance criteria should
be part of the system contract and be approved by the customer and the devel-
oper. In practice, however, it can be difficult to define criteria so early in the
process. Detailed requirements may not be available, and the requirements will
almost certainly change during the development process.

2. Plan acceptance testing This stage involves deciding on the resources, time, and
budget for acceptance testing and establishing a testing schedule. The accept-
ance test plan should also discuss the required coverage of the requirements and
the order in which system features are tested. It should define risks to the testing
process such as system crashes and inadequate performance, and discuss how
these risks can be mitigated.

3. Derive acceptance tests Once acceptance criteria have been established, tests
have to be designed to check whether or not a system is acceptable. Acceptance
tests should aim to test both the functional and non-functional characteristics
(e.g., performance) of the system. They should ideally provide complete cover-
age of the system requirements. In practice, it is difficult to establish completely
objective acceptance criteria. There is often scope for argument about whether
or not a test shows that a criterion has definitely been met.

4.  Run acceptance tests The agreed acceptance tests are executed on the system.
Ideally, this step should take place in the actual environment where the system
will be used, but this may be disruptive and impractical. Therefore, a user testing
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environment may have to be set up to run these tests. It is difficult to automate
this process as part of the acceptance tests may involve testing the interactions
between end-users and the system. Some training of end-users may be required.

5. Negotiate test results It is very unlikely that all of the defined acceptance tests
will pass and that there will be no problems with the system. If this is the case,
then acceptance testing is complete and the system can be handed over. More
commonly, some problems will be discovered. In such cases, the developer and
the customer have to negotiate to decide if the system is good enough to be used.
They must also agree on how the developer will fix the identified problems.

6. Reject/accept system This stage involves a meeting between the developers and
the customer to decide on whether or not the system should be accepted. If the
system is not good enough for use, then further development is required to fix
the identified problems. Once complete, the acceptance testing phase is repeated.

You might think that acceptance testing is a clear-cut contractual issue. If a system
does not pass its acceptance tests, then it should not be accepted and payment should
not be made. However, the reality is more complex. Customers want to use the soft-
ware as soon as they can because of the benefits of its immediate deployment. They
may have bought new hardware, trained staff, and changed their processes. They may
be willing to accept the software, irrespective of problems, because the costs of not
using the software are greater than the costs of working around the problems.

Therefore, the outcome of negotiations may be conditional acceptance of the sys-
tem. The customer may accept the system so that deployment can begin. The system
provider agrees to repair urgent problems and deliver a new version to the customer
as quickly as possible.

In agile methods such as Extreme Programming, there may be no separate accept-
ance testing activity. The end-user is part of the development team (i.e., he or she is
an alpha tester) and provides the system requirements in terms of user stories. He or
she is also responsible for defining the tests, which decide whether or not the devel-
oped software supports the user stories. These tests are therefore equivalent to
acceptance tests. The tests are automated, and development does not proceed until
the story acceptance tests have successfully been executed.

When users are embedded in a software development team, they should ideally be
“typical” users with general knowledge of how the system will be used. However, it
can be difficult to find such users, and so the acceptance tests may actually not be a
true reflection of how a system is used in practice. Furthermore, the requirement for
automated testing limits the flexibility of testing interactive systems. For such sys-
tems, acceptance testing may require groups of end-users to use the system as if it
was part of their everyday work. Therefore, while an “embedded user” is an attrac-
tive notion in principle, it does not necessarily lead to high-quality tests of the system.

The problem of user involvement in agile teams is one reason why many compa-
nies use a mix of agile and more traditional testing. The system may be developed
using agile techniques, but, after completion of a major release, separate acceptance
testing is used to decide if the system should be accepted.
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KEY POINTS

Testing can only show the presence of errors in a program. It cannot show that there are no
remaining faults.

Development testing is the responsibility of the software development team. A separate team
should be responsible for testing a system before it is released to customers. In the user testing
process, customers or system users provide test data and check that tests are successful.

Development testing includes unit testing in which you test individual objects and methods;
component testing in which you test related groups of objects; and system testing in which you
test partial or complete systems.

When testing software, you should try to “break” the software by using experience and
guidelines to choose types of test cases that have been effective in discovering defects in
other systems.

Wherever possible, you should write automated tests. The tests are embedded in a program
that can be run every time a change is made to a system.

Test-first development is an approach to development whereby tests are written before the code
to be tested. Small code changes are made, and the code is refactored until all tests execute
successfully.

Scenario testing is useful because it replicates the practical use of the system. It involves
inventing a typical usage scenario and using this to derive test cases.

Acceptance testing is a user testing process in which the aim is to decide if the software is good
enough to be deployed and used in its planned operational environment.

FURTHER READING

“How to design practical test cases.” A how-to article on test-case design by an author from a
Japanese company that has a good reputation for delivering software with very few faults.
(T. Yamaura, IEEE Software, 15(6), November 1998) http://dx.doi.org/10.1109/52.730835.

“Test-driven development.” This special issue on test-driven development includes a good general
overview of TDD as well as experience papers on how TDD has been used for different types of
software. (IEEE Software, 24 (3) May/June 2007).

Exploratory Software Testing. This is a practical, rather than theoretical, book on software testing
which develops the ideas in Whittaker’s earlier book, How to Break Software. The author presents a
set of experience-based guidelines on software testing. (J. A. Whittaker, 2009, Addison-Wesley).

How Google Tests Software. This is a book about testing large-scale cloud-based systems and
poses a whole set of new challenges compared to custom software applications. While | don’t think
that the Google approach can be used directly, there are interesting lessons in this book for large-
scale system testing. (J. Whittaker, J. Arbon, and ). Carollo, 2012, Addison-Wesley).
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PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

EXERCISES

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

Explain how the number of known defects remaining in a program at the time of delivery
affects product support.

Testing is meant to show that a program does what it is intended to do. Why may testers not
always know what a program is intended for?

Some people argue that developers should not be involved in testing their own code but that
all testing should be the responsibility of a separate team. Give arguments for and against
testing by the developers themselves.

You have been asked to test a method called catWhiteSpace in a “Paragraph” object that, within
the paragraph, replaces sequences of blank characters with a single blank character. Identify
testing partitions for this example and derive a set of tests for the catWhiteSpace method.

What is regression testing? Explain how the use of automated tests and a testing framework
such as JUnit simplifies regression testing.

The Mentcare system is constructed by adapting an off-the-shelf information system. What do
you think are the differences between testing such a system and testing software that is
developed using an object-oriented language such as Java?

Write a scenario that could be used to help design tests for the wilderness weather station system.

What do you understand by the term stress testing? Suggest how you might stress-test the
Mentcare system.

What are the benefits of involving users in release testing at an early stage in the testing pro-
cess? Are there disadvantages in user involvement?

A common approach to system testing is to test the more important functionalities of a system
first, followed by the less important functionalities until the testing budget is exhausted. Dis-
cuss the ethics involved in identifying what “more important” means.


http://www.pearsonglobaleditions.com/Sommerville
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9
Software evolution

Objectives

The objectives of this chapter are to explain why software evolution is
such an important part of software engineering and to describe the
challenges of maintaining a large base of software systems, developed
over many years. When you have read this chapter, you will:

m understand that software systems have to adapt and evolve if they are
to remain useful and that software change and evolution should be
considered as an integral part of software engineering;

m understand what is meant by legacy systems and why these systems
are important to businesses;

m understand how legacy systems can be assessed to decide whether
they should be scrapped, maintained, reengineered, or replaced;

m have learned about different types of software maintenance and the
factors that affect the costs of making changes to legacy software
systems.

Contents

9.1 Evolution processes
9.2 Legacy systems
9.3 Software maintenance




256 Chapter9

Software evolution

Large software systems usually have a long lifetime. For example, military or infra-
structure systems, such as air traffic control systems, may have a lifetime of 30 years or
more. Business systems are often more than 10 years old. Enterprise software costs a lot
of money, so a company has to use a software system for many years to get a return on
its investment. Successful software products and apps may have been introduced many
years ago with new versions released every few years. For example, the first version of
Microsoft Word was introduced in 1983, so it has been around for more than 30 years.

During their lifetime, operational software systems have to change if they are
to emain useful. Business changes and changes to user expectations generate new
requirements for the software. Parts of the software may have to be modified to cor-
rect errors that are found in operation, to adapt it for changes to its hardware and
software platform, and to improve its performance or other non-functional character-
istics. Software products and apps have to evolve to cope with platform changes and
new features introduced by their competitors. Software systems, therefore, adapt and
evolve during their lifetime from initial deployment to final retirement.

Businesses have to change their software to ensure that they continue to get value
from it. Their systems are critical business assets, and they have to invest in change to
maintain the value of these assets. Consequently, most large companies spend more
on maintaining existing systems than on new systems development. Historical data
suggests that somewhere between 60% and 90% of software costs are evolution costs
(Lientz and Swanson 1980; Erlikh 2000). Jones (Jones 2006) found that about 75% of
development staff in the United States in 2006 were involved in software evolution
and suggested that this percentage was unlikely to fall in the foreseeable future.

Software evolution is particularly expensive in enterprise systems when individ-
ual software systems are part of a broader “system of systems.” In such cases, you
cannot just consider the changes to one system; you also need to examine how these
changes affect the broader system of systems. Changing one system may mean that
other systems in its environment may also have to evolve to cope with that change.

Therefore, as well as understanding and analyzing the impact of a proposed
change on the system itself, you also have to assess how this change may affect other
systems in the operational environment. Hopkins and Jenkins (Hopkins and Jenkins
2008) have coined the term brownfield software development to describe situations
in which software systems have to be developed and managed in an environment
where they are dependent on other software systems.

The requirements of installed software systems change as the business and its
environment change, so new releases of the systems that incorporate changes and
updates are usually created at regular intervals. Software engineering is therefore a
spiral process with requirements, design, implementation, and testing going on
throughout the lifetime of the system (Figure 9.1). You start by creating release 1 of
the system. Once delivered, changes are proposed, and the development of release 2
starts almost immediately. In fact, the need for evolution may become obvious even
before the system is deployed, so later releases of the software may start develop-
ment before the current version has even been released.

In the last 10 years, the time between iterations of the spiral has reduced dramati-
cally. Before the widespread use of the Internet, new versions of a software system
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may only have been released every 2 or 3 years. Now, because of competitive pres-
sures and the need to respond quickly to user feedback, the gap between releases of
some apps and web-based systems may be weeks rather than years.

This model of software evolution is applicable when the same company is respon-
sible for the software throughout its lifetime. There is a seamless transition from
development to evolution, and the same software development methods and pro-
cesses are applied throughout the lifetime of the software. Software products and
apps are developed using this approach.

The evolution of custom software, however, usually follows a different model.
The system customer may pay a software company to develop the software and
then take over responsibility for support and evolution using its own staff.
Alternatively, the software customer might issue a separate contract to a different
software company for system support and evolution.

In this situation, there are likely to be discontinuities in the evolution process.
Requirements and design documents may not be passed from one company to
another. Companies may merge or reorganize, inherit software from other compa-
nies, and then find that this has to be changed. When the transition from develop-
ment to evolution is not seamless, the process of changing the software after delivery
is called software maintenance. As I discuss later in this chapter, maintenance
involves extra process activities, such as program understanding, in addition to the
normal activities of software development.

Rajlich and Bennett (Rajlich and Bennett 2000) propose an alternative view of
the software evolution life cycle for business systems. In this model, they distinguish
between evolution and servicing. Evolution is the phase in which significant changes
to the software architecture and functionality are made. During servicing, the only
changes that are made are relatively small but essential changes. These phases over-
lap with each other, as shown in Figure 9.2.

According to Rajlich and Bennett, when software is first used successfully, many
changes to the requirements by stakeholders are proposed and implemented. This is
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the evolution phase. However, as the software is modified, its structure tends to
degrade, and system changes become more and more expensive. This often happens
after a few years of use when other environmental changes, such as hardware and
operating systems, are also required. At some stage in the life cycle, the software
reaches a transition point where significant changes and the implementation of new
requirements become less and less cost-effective. At this stage, the software moves
from evolution to servicing.

During the servicing phase, the software is still useful, but only small tactical
changes are made to it. During this stage, the company is usually considering how the
software can be replaced. In the final stage, the software may still be used, but only
essential changes are made. Users have to work around problems that they discover.
Eventually, the software is retired and taken out of use. This often incurs further costs
as data is transferred from an old system to a newer replacement system.

BN Evolution processes

As with all software processes, there is no such thing as a standard software change
or evolution process. The most appropriate evolution process for a software system
depends on the type of software being maintained, the software development pro-
cesses used in an organization, and the skills of the people involved. For some types
of system, such as mobile apps, evolution may be an informal process, where change
requests mostly come from conversations between system users and developers. For
other types of systems, such as embedded critical systems, software evolution may be
formalized, with structured documentation produced at each stage in the process.

Formal or informal system change proposals are the driver for system evolution in all
organizations. In a change proposal, an individual or group suggests changes and updates
to an existing software system. These proposals may be based on existing requirements
that have not been implemented in the released system, requests for new requirements,
bug reports from system stakeholders, and new ideas for software improvement from the
system development team. The processes of change identification and system evolution
are cyclical and continue throughout the lifetime of a system (Figure 9.3).

Before a change proposal is accepted, there needs to be an analysis of the
software to work out which components need to be changed. This analysis allows
the cost and the impact of the change to be assessed. This is part of the general pro-
cess of change management, which should also ensure that the correct versions of
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components are included in each system release. I discuss change and configuration
management in Chapter 25.

Figure 9.4 shows some of the activities involved in software evolution. The pro-
cess includes the fundamental activities of change analysis, release planning, system
implementation, and releasing a system to customers. The cost and impact of these
changes are assessed to see how much of the system is affected by the change and
how much it might cost to implement the change.

If the proposed changes are accepted, a new release of the system is planned.
During release planning, all proposed changes (fault repair, adaptation, and new
functionality) are considered. A decision is then made on which changes to imple-
ment in the next version of the system. The changes are implemented and validated,
and a new version of the system is released. The process then iterates with a new set
of changes proposed for the next release.

In situations where development and evolution are integrated, change implemen-
tation is simply an iteration of the development process. Revisions to the system are
designed, implemented, and tested. The only difference between initial development
and evolution is that customer feedback after delivery has to be considered when
planning new releases of an application.

Where different teams are involved, a critical difference between development and
evolution is that the first stage of change implementation requires program understanding.
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During the program understanding phase, new developers have to understand how the
program is structured, how it delivers functionality, and how the proposed change might
affect the program. They need this understanding to make sure that the implemented
change does not cause new problems when it is introduced into the existing system.

If requirements specification and design documents are available, these should be
updated during the evolution process to reflect the changes that are required (Figure 9.5).
New software requirements should be written, and these should be analyzed and
validated. If the design has been documented using UML models, these models
should be updated. The proposed changes may be prototyped as part of the change
analysis process, where you assess the implications and costs of making the change.

However, change requests sometimes relate to problems in operational systems
that have to be tackled urgently. These urgent changes can arise for three reasons:

1. If a serious system fault is detected that has to be repaired to allow normal
operation to continue or to address a serious security vulnerability.

2. If changes to the systems operating environment have unexpected effects that
disrupt normal operation.

3. If there are unanticipated changes to the business running the system, such as
the emergence of new competitors or the introduction of new legislation that
affects the system.

In these cases, the need to make the change quickly means that you may not be able
to update all of the software documentation. Rather than modify the requirements and
design, you make an emergency fix to the program to solve the immediate problem
(Figure 9.6). The danger here is that the requirements, the software design, and the
code can become inconsistent. While you may intend to document the change in the
requirements and design, additional emergency fixes to the software may then be
needed. These take priority over documentation. Eventually, the original change is
forgotten, and the system documentation and code are never realigned. This problem
of maintaining multiple representations of a system is one of the arguments for mini-
mal documentation, which is fundamental to agile development processes.

Emergency system repairs have to be completed as quickly as possible. You
choose a quick and workable solution rather than the best solution as far as system
structure is concerned. This tends to accelerate the process of software ageing so that
future changes become progressively more difficult and maintenance costs increase.
Ideally, after emergency code repairs are made, the new code should be refactored
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and improved to avoid program degradation. Of course, the code of the repair may
be reused if possible. However, an alternative, better solution to the problem may be
discovered when more time is available for analysis.

Agile methods and processes, discussed in Chapter 3, may be used for program
evolution as well as program development. Because these methods are based on
incremental development, making the transition from agile development to postde-
livery evolution should be seamless.

However, problems may arise during the handover from a development team to a
separate team responsible for system evolution. There are two potentially problem-
atic situations:

1. Where the development team has used an agile approach but the evolution team
prefers a plan-based approach. The evolution team may expect detailed docu-
mentation to support evolution, and this is rarely produced in agile processes.
There may be no definitive statement of the system requirements that can be
modified as changes are made to the system.

2. Where a plan-based approach has been used for development but the evolution
team prefers to use agile methods. In this case, the evolution team may have to
start from scratch developing automated tests. The code in the system may not
have been refactored and simplified, as is expected in agile development. In this
case, some program reengineering may be required to improve the code before
it can be used in an agile development process.

Agile techniques such as test-driven development and automated regression test-
ing are useful when system changes are made. System changes may be expressed as
user stories, and customer involvement can help prioritize changes that are required
in an operational system. The Scrum approach of focusing on a backlog of work to
be done can help prioritize the most important system changes. In short, evolution
simply involves continuing the agile development process.

Agile methods used in development may, however, have to be modified when
they are used for program maintenance and evolution. It may be practically impossible
to involve users in the development team as change proposals come from a wide
range of stakeholders. Short development cycles may have to be interrupted to deal
with emergency repairs, and the gap between releases may have to be lengthened to
avoid disrupting operational processes.

BN Legacy systems

Large companies started computerizing their operations in the 1960s, so for the past 50
years or so, more and more software systems have been introduced. Many of these
systems have been replaced (sometimes several times) as the business has changed and
evolved. However, a lot of old systems are still in use and play a critical part in the run-
ning of the business. These older software systems are sometimes called legacy systems.
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Legacy systems are older systems that rely on languages and technology that are
no longer used for new systems development. Typically, they have been maintained
over a long period, and their structure may have been degraded by the changes that
have been made. Legacy software may be dependent on older hardware, such as
mainframe computers and may have associated legacy processes and procedures. It
may be impossible to change to more effective business processes because the leg-
acy software cannot be modified to support new processes.

Legacy systems are not just software systems but are broader sociotechnical systems
that include hardware, software, libraries, and other supporting software and business
processes. Figure 9.7 shows the logical parts of a legacy system and their relationships.

1. System hardware Legacy systems may have been written for hardware that is no
longer available, that is expensive to maintain, and that may not be compatible
with current organizational IT purchasing policies.

2. Support software The legacy system may rely on a range of support software
from the operating system and utilities provided by the hardware manufacturer
through to the compilers used for system development. Again, these may be
obsolete and no longer supported by their original providers.

3. Application software The application system that provides the business services
is usually made up of a number of application programs that have been devel-
oped at different times. Some of these programs will also be part of other appli-
cation software systems.

4. Application data These data are processed by the application system. In many
legacy systems, an immense volume of data has accumulated over the lifetime
of the system. This data may be inconsistent, may be duplicated in several files,
and may be spread over a number of different databases.

5. Business processes These processes are used in the business to achieve some
business objective. An example of a business process in an insurance company
would be issuing an insurance policy; in a manufacturing company, a business
process would be accepting an order for products and setting up the associated
manufacturing process. Business processes may be designed around a legacy
system and constrained by the functionality that it provides.

6. Business policies and rules These are definitions of how the business should be
carried out and constraints on the business. Use of the legacy application system
may be embedded in these policies and rules.

An alternative way of looking at these components of a legacy system is as a
series of layers, as shown in Figure 9.8.

Each layer depends on the layer immediately below it and interfaces with that
layer. If interfaces are maintained, then you should be able to make changes within a
layer without affecting either of the adjacent layers. In practice, however, this simple
encapsulation is an oversimplification, and changes to one layer of the system may
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Figure 9.7 The elements

of a legacy system
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require consequent changes to layers that are both above and below the changed
level. The reasons for this are as follows:

1. Changing one layer in the system may introduce new facilities, and higher
layers in the system may then be changed to take advantage of these facilities.
For example, a new database introduced at the support software layer may
include facilities to access the data through a web browser, and business
processes may be modified to take advantage of this facility.

2. Changing the software may slow the system down so that new hardware is
needed to improve the system performance. The increase in performance from
the new hardware may then mean that further software changes that were
previously impractical become possible.

3. It is often impossible to maintain hardware interfaces, especially if new hard-
ware is introduced. This is a particular problem in embedded systems where
there is a tight coupling between software and hardware. Major changes to the
application software may be required to make effective use of the new hardware.

It is difficult to know exactly how much legacy code is still in use, but, as an indi-
cator, industry has estimated that there are more than 200 billion lines of COBOL
code in current business systems. COBOL is a programming language designed for
writing business systems, and it was the main business development language from
the 1960s to the 1990s, particularly in the finance industry (Mitchell 2012). These
programs still work effectively and efficiently, and the companies using them see no
need to change them. A major problem that they face, however, is a shortage of
COBOL programmers as the original developers of the system retire. Universities no
longer teach COBOL, and younger software engineers are more interested in pro-
gramming in modern languages.

Skill shortages are only one of the problems of maintaining business legacy sys-
tems. Other issues include security vulnerabilities because these systems were
developed before the widespread use of the Internet and problems in interfacing
with systems written in modern programming languages. The original software tool
supplier may be out of business or may no longer maintain the support tools used to
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Figure 9.8 Legacy
system layers
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develop the system. The system hardware may be obsolete and so increasingly
expensive to maintain.

Why then do businesses not simply replace these systems with more modern
equivalents? The simple answer to this question is that it is too expensive and too
risky to do so. If a legacy system works effectively, the costs of replacement may
exceed the savings that come from the reduced support costs of a new system.
Scrapping legacy systems and replacing them with more modern software open up
the possibility of things going wrong and the new system failing to meet the needs
of the business. Managers try to minimize those risks and therefore do not want to
face the uncertainties of new software systems.

I discovered some of the problems of legacy system replacement when I was
involved in analyzing a legacy system replacement project in a large organization.
This enterprise used more than 150 legacy systems to run its business. It decided to
replace all of these systems with a single, centrally maintained ERP system. For a
number of business and technology reasons, the new system development was a
failure, and it did not deliver the improvements promised. After spending more than
£10 million, only a part of the new system was operational, and it worked less effec-
tively than the systems it replaced. Users continued to use the older systems but
could not integrate these with the part of the new system that had been implemented,
so additional manual processing was required.

There are several reasons why it is expensive and risky to replace legacy systems
with new systems:

1. There is rarely a complete specification of the legacy system. The original spec-
ification may have been lost. If a specification exists, it is unlikely that it has
been updated with all of the system changes that have been made. Therefore,
there is no straightforward way of specifying a new system that is functionally
identical to the system that is in use.

2. Business processes and the ways in which legacy systems operate are often inex-
tricably intertwined. These processes are likely to have evolved to take advantage
of the software’s services and to work around the software’s shortcomings. If the
system is replaced, these processes have to change with potentially unpredictable
costs and consequences.
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3. Important business rules may be embedded in the software and may not be doc-
umented elsewhere. A business rule is a constraint that applies to some business
function, and breaking that constraint can have unpredictable consequences for
the business. For example, an insurance company may have embedded its rules
for assessing the risk of a policy application in its software. If these rules are not
maintained, the company may accept high-risk policies that could result in
expensive future claims.

4. New software development is inherently risky, so that there may be unexpected prob-
lems with a new system. It may not be delivered on time and for the price expected.

Keeping legacy systems in use avoids the risks of replacement, but making
changes to existing software inevitably becomes more expensive as systems get
older. Legacy software systems that are more than a few years old are particularly
expensive to change:

1. The program style and usage conventions are inconsistent because different
people have been responsible for system changes. This problem adds to the dif-
ficulty of understanding the system code.

2. Part or all of the system may be implemented using obsolete programming
languages. It may be difficult to find people who have knowledge of these languages.
Expensive outsourcing of system maintenance may therefore be required.

3. System documentation is often inadequate and out of date. In some cases, the
only documentation is the system source code.

4. Many years of maintenance usually degrades the system structure, making it
increasingly difficult to understand. New programs may have been added and
interfaced with other parts of the system in an ad hoc way.

5. The system may have been optimized for space utilization or execution
speed so that it runs effectively on older slower hardware. This normally
involves using specific machine and language optimizations, and these usu-
ally lead to software that is hard to understand. This causes problems for
programmers who have learned modern software engineering techniques and
who don’t understand the programming tricks that have been used to opti-
mize the software.

6. The data processed by the system may be maintained in different files that have
incompatible structures. There may be data duplication, and the data itself may
be out of date, inaccurate, and incomplete. Several databases from different sup-
pliers may be used.

At same stage, the costs of managing and maintaining the legacy system become
so high that it has to be replaced with a new system. In the next section, I discuss a
systematic decision-making approach to making such a replacement decision.
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9.2.1 Legacy system management

For new software systems developed using modern software engineering processes,
such as agile development and software product lines, it is possible to plan how to
integrate system development and evolution. More and more companies understand
that the system development process is a whole life-cycle process. Separating soft-
ware development and software evolution is unhelpful and leads to higher costs.
However, as | have discussed, there is still a huge number of legacy systems that are
critical business systems. These have to be extended and adapted to changing
e-business practices.

Most organizations have a limited budget for maintaining and upgrading their
portfolio of legacy systems. They have to decide how to get the best return on their
investment. This involves making a realistic assessment of their legacy systems and
then deciding on the most appropriate strategy for evolving these systems. There are
four strategic options:

1. Scrap the system completely This option should be chosen when the system is
not making an effective contribution to business processes. This usually occurs
when business processes have changed since the system was installed and are
no longer reliant on the legacy system.

2. Leave the system unchanged and continue with regular maintenance This option
should be chosen when the system is still required but is fairly stable and the
system users make relatively few change requests.

3. Reengineer the system to improve its maintainability This option should be chosen
when the system quality has been degraded by change and where new change to
the system is still being proposed. This process may include developing new inter-
face components so that the original system can work with other, newer systems.

4. Replace all or part of the system with a new system This option should be chosen
when factors, such as new hardware, mean that the old system cannot continue
in operation, or where